期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于DRNN-LSTM-IPSO的锅炉经济运行优化目标值
1
作者 钱虹 王海心 徐邦智 《科学技术与工程》 北大核心 2024年第7期2749-2758,共10页
锅炉作为火电厂的重要设备,提高其运行经济性直接影响电厂的生产效益,而锅炉运行参数优化目标值的合理确定是保障锅炉经济运行的关键。首先提出改进的高斯混合模型算法应用于工况划分,即通过划分数据的分散度作为依据并基于马氏距离来... 锅炉作为火电厂的重要设备,提高其运行经济性直接影响电厂的生产效益,而锅炉运行参数优化目标值的合理确定是保障锅炉经济运行的关键。首先提出改进的高斯混合模型算法应用于工况划分,即通过划分数据的分散度作为依据并基于马氏距离来构建评价准则函数,以确定聚类数;其次通过构建具备长短时记忆功能的深度循环神经网络(deep recurrent neural network with long-short term memory, DRNN-LSTM)建立各工况区间下的经济模型;最后在经济模型构建的基础上,针对传统粒子群算法容易陷入局部极值问题,通过对惯性权重和加速因子进行调整得到改进的粒子群算法(improved particle swarm optimization, IPSO),可更加精准地在不同工况下进行区间范围内寻优,确定运行参数的优化目标值。实验结果表明,采用本文方法确定的优化目标值对应供电煤耗优于历史最优运行值,说明了该方法在挖掘锅炉优化运行潜力上具有一定的优势,按此方案调整锅炉运行可有效降低能耗水平,以达到锅炉经济运行的目的。 展开更多
关键词 工况划分 改进的高斯混合模型 drnn-lstm IPSO 优化目标值
下载PDF
基于深度循环神经网络的SCR烟气脱硝系统出口NOx排放预测研究 被引量:19
2
作者 钱虹 柴婷婷 张超凡 《热能动力工程》 CAS CSCD 北大核心 2020年第8期77-84,共8页
基于具有长短时记忆功能的深度循环神经网络(Deep Recurrent neural network with Long-short term memory,DRNN-LSTM),利用某厂650 MW燃煤锅炉一个月的历史运行数据,建立了SCR烟气脱硝系统出口NOx排放预测模型。DRNN-LSTM网络同一隐藏... 基于具有长短时记忆功能的深度循环神经网络(Deep Recurrent neural network with Long-short term memory,DRNN-LSTM),利用某厂650 MW燃煤锅炉一个月的历史运行数据,建立了SCR烟气脱硝系统出口NOx排放预测模型。DRNN-LSTM网络同一隐藏层的所有循环体中的参数矩阵相同,需要学习的参数个数少,训练模型具有很高的稳定性。测试结果与定量分析表明:DRNN-LSTM模型计算时间与其他传统数据模型相近,但拟合效果与预测精度明显高于其他模型,说明该模型收敛速度快、泛化能力强,可准确描述SCR脱硝系统的反应过程,能够有效应用于电厂烟气脱硝系统出口NOx浓度的预测中。 展开更多
关键词 NOX排放 预测模型 drnn-lstm 生产数据
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部