目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清...目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清零”策略防控效果提供科学依据。方法考虑到西安市本轮疫情存在大量的无症状感染者、依时变化的参数以及采取的管控举措等特点,构建具有阶段性防控措施的时变SEAIQR模型。考虑到COVID-19疫情数据的时序性特征及它们之间的非线性关系,构建深度学习Dropout-LSTM模型。选用2021年12月9日-2022年1月31日西安市新增确诊病例数据进行拟合,用2022年2月1日-2022年2月7日数据评估预测效果,计算有效再生数(R_(t))并评价不同参数对疫情发展的影响。结果SEAIQR模型预测的新增确诊病例拐点预计在2021年12月26日出现,约为176例,疫情将于2022年1月24日实现“动态清零”,模型R^(2)=0.849。Dropout-LSTM模型能够体现数据的时序性与非线性特征,预测出的新增确诊病例数与实际情况高度吻合,R^(2)=0.937。Dropout-LSTM模型的MAE和RMSE均较SEAIQR模型低,说明预测结果更为理想。疫情暴发初期,R 0为5.63,自实施全面管控后,R_(t)呈逐渐下降趋势,直到2021年12月27日降至1.0以下。随着有效接触率不断缩小、管控措施的提早实施及免疫阈值的提高,新增确诊病例在到达拐点时的人数将会持续降低。结论建立的Dropout-LSTM模型实现了较准确的疫情预测,可为COVID-19疫情“动态清零”防控决策提供借鉴。展开更多
Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. Th...Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.展开更多
自新冠疫情暴发以来已经对我国造成巨大影响,对新冠疫情趋势预测进行研究能够帮助人们做出应对措施。为了提高新冠疫情趋势预测模型的精度,提出了一种基于双向长短期神经网络(bi-directional long short-term memory,Bi-LSTM)建立时间...自新冠疫情暴发以来已经对我国造成巨大影响,对新冠疫情趋势预测进行研究能够帮助人们做出应对措施。为了提高新冠疫情趋势预测模型的精度,提出了一种基于双向长短期神经网络(bi-directional long short-term memory,Bi-LSTM)建立时间序列模型。在此基础上,引入Dropout方法使神经元随机失活,解决过拟合问题。最后与长短期神经网络(long short-term memory,LSTM)、BP神经网络以及自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA)进行对比仿真实验。通过对累计确诊人数、累计死亡人数、累计治愈人数的预测结果进行对比。结果表明,文章使用的方法对于新冠疫情趋势预测明显优于其他模型。展开更多
In bilingual translation,attention-based Neural Machine Translation(NMT)models are used to achieve synchrony between input and output sequences and the notion of alignment.NMT model has obtained state-of-the-art perfo...In bilingual translation,attention-based Neural Machine Translation(NMT)models are used to achieve synchrony between input and output sequences and the notion of alignment.NMT model has obtained state-of-the-art performance for several language pairs.However,there has been little work exploring useful architectures for Urdu-to-English machine translation.We conducted extensive Urdu-to-English translation experiments using Long short-term memory(LSTM)/Bidirectional recurrent neural networks(Bi-RNN)/Statistical recurrent unit(SRU)/Gated recurrent unit(GRU)/Convolutional neural network(CNN)and Transformer.Experimental results show that Bi-RNN and LSTM with attention mechanism trained iteratively,with a scalable data set,make precise predictions on unseen data.The trained models yielded competitive results by achieving 62.6%and 61%accuracy and 49.67 and 47.14 BLEU scores,respectively.From a qualitative perspective,the translation of the test sets was examined manually,and it was observed that trained models tend to produce repetitive output more frequently.The attention score produced by Bi-RNN and LSTM produced clear alignment,while GRU showed incorrect translation for words,poor alignment and lack of a clear structure.Therefore,we considered refining the attention-based models by defining an additional attention-based dropout layer.Attention dropout fixes alignment errors and minimizes translation errors at the word level.After empirical demonstration and comparison with their counterparts,we found improvement in the quality of the resulting translation system and a decrease in the perplexity and over-translation score.The ability of the proposed model was evaluated using Arabic-English and Persian-English datasets as well.We empirically concluded that adding an attention-based dropout layer helps improve GRU,SRU,and Transformer translation and is considerably more efficient in translation quality and speed.展开更多
AI-related research is conducted in various ways,but the reliability of AI prediction results is currently insufficient,so expert decisions are indispensable for tasks that require essential decision-making.XAI(eXplai...AI-related research is conducted in various ways,but the reliability of AI prediction results is currently insufficient,so expert decisions are indispensable for tasks that require essential decision-making.XAI(eXplainable AI)is studied to improve the reliability of AI.However,each XAI methodology shows different results in the same data set and exact model.This means that XAI results must be given meaning,and a lot of noise value emerges.This paper proposes the HFD(Hybrid Feature Dropout)-based XAI and evaluation methodology.The proposed XAI methodology can mitigate shortcomings,such as incorrect feature weights and impractical feature selection.There are few XAI evaluation methods.This paper proposed four evaluation criteria that can give practical meaning.As a result of verifying with the malware data set(Data Challenge 2019),we confirmed better results than other XAI methodologies in 4 evaluation criteria.Since the efficiency of interpretation is verified with a reasonable XAI evaluation standard,The practicality of the XAI methodology will be improved.In addition,The usefulness of the XAI methodology will be demonstrated to enhance the reliability of AI,and it helps apply AI results to essential tasks that require expert decision-making.展开更多
Deep convolution neural networks are going deeper and deeper.How-ever,the complexity of models is prone to overfitting in training.Dropout,one of the crucial tricks,prevents units from co-adapting too much by randomly...Deep convolution neural networks are going deeper and deeper.How-ever,the complexity of models is prone to overfitting in training.Dropout,one of the crucial tricks,prevents units from co-adapting too much by randomly drop-ping neurons during training.It effectively improves the performance of deep net-works but ignores the importance of the differences between neurons.To optimize this issue,this paper presents a new dropout method called guided dropout,which selects the neurons to switch off according to the differences between the convo-lution kernel and preserves the informative neurons.It uses an unsupervised clus-tering algorithm to cluster similar neurons in each hidden layer,and dropout uses a certain probability within each cluster.Thereby this would preserve the hidden layer neurons with different roles while maintaining the model’s scarcity and gen-eralization,which effectively improves the role of the hidden layer neurons in learning the features.We evaluated our approach compared with two standard dropout networks on three well-established public object detection datasets.Experimental results on multiple datasets show that the method proposed in this paper has been improved on false positives,precision-recall curve and average precision without increasing the amount of computation.It can be seen that the increased performance of guided dropout is thanks to shallow learning in the net-works.The concept of guided dropout would be beneficial to the other vision tasks.展开更多
Massive open online courses(MOOCs)have become a way of online learning across the world in the past few years.However,the extremely high dropout rate has brought many challenges to the development of online learning.M...Massive open online courses(MOOCs)have become a way of online learning across the world in the past few years.However,the extremely high dropout rate has brought many challenges to the development of online learning.Most of the current methods have low accuracy and poor generalization ability when dealing with high-dimensional dropout features.They focus on the analysis of the learning score and check result of online course,but neglect the phased student behaviors.Besides,the status of student participation at a given moment is necessarily impacted by the prior status of learning.To address these issues,this paper has proposed an ensemble learning model for early dropout prediction(ELM-EDP)that integrates attention-based document representation as a vector(A-Doc2vec),feature learning of course difficulty,and weighted soft voting ensemble with heterogeneous classifiers(WSV-HC).First,A-Doc2vec is proposed to learn sequence features of student behaviors of watching lecture videos and completing course assignments.It also captures the relationship between courses and videos.Then,a feature learning method is proposed to reduce the interference caused by the differences of course difficulty on the dropout prediction.Finally,WSV-HC is proposed to highlight the benefits of integration strategies of boosting and bagging.Experiments on the MOOCCube2020 dataset show that the high accuracy of our ELM-EDP has better results on Accuracy,Precision,Recall,and F1.展开更多
文摘目的基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估“动态清零”策略防控效果提供科学依据。方法考虑到西安市本轮疫情存在大量的无症状感染者、依时变化的参数以及采取的管控举措等特点,构建具有阶段性防控措施的时变SEAIQR模型。考虑到COVID-19疫情数据的时序性特征及它们之间的非线性关系,构建深度学习Dropout-LSTM模型。选用2021年12月9日-2022年1月31日西安市新增确诊病例数据进行拟合,用2022年2月1日-2022年2月7日数据评估预测效果,计算有效再生数(R_(t))并评价不同参数对疫情发展的影响。结果SEAIQR模型预测的新增确诊病例拐点预计在2021年12月26日出现,约为176例,疫情将于2022年1月24日实现“动态清零”,模型R^(2)=0.849。Dropout-LSTM模型能够体现数据的时序性与非线性特征,预测出的新增确诊病例数与实际情况高度吻合,R^(2)=0.937。Dropout-LSTM模型的MAE和RMSE均较SEAIQR模型低,说明预测结果更为理想。疫情暴发初期,R 0为5.63,自实施全面管控后,R_(t)呈逐渐下降趋势,直到2021年12月27日降至1.0以下。随着有效接触率不断缩小、管控措施的提早实施及免疫阈值的提高,新增确诊病例在到达拐点时的人数将会持续降低。结论建立的Dropout-LSTM模型实现了较准确的疫情预测,可为COVID-19疫情“动态清零”防控决策提供借鉴。
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1202600 and 2023YFE0208600)in part by the National Natural Science Foundation of China (Grant Nos. 62174082, 92364106, 61921005, 92364204, and 62074075)。
文摘Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.
文摘自新冠疫情暴发以来已经对我国造成巨大影响,对新冠疫情趋势预测进行研究能够帮助人们做出应对措施。为了提高新冠疫情趋势预测模型的精度,提出了一种基于双向长短期神经网络(bi-directional long short-term memory,Bi-LSTM)建立时间序列模型。在此基础上,引入Dropout方法使神经元随机失活,解决过拟合问题。最后与长短期神经网络(long short-term memory,LSTM)、BP神经网络以及自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA)进行对比仿真实验。通过对累计确诊人数、累计死亡人数、累计治愈人数的预测结果进行对比。结果表明,文章使用的方法对于新冠疫情趋势预测明显优于其他模型。
基金This work was supported by the Institute for Big Data Analytics and Artificial Intelligence(IBDAAI),Universiti Teknologi Mara,Shah Alam,Selangor.Malaysia.
文摘In bilingual translation,attention-based Neural Machine Translation(NMT)models are used to achieve synchrony between input and output sequences and the notion of alignment.NMT model has obtained state-of-the-art performance for several language pairs.However,there has been little work exploring useful architectures for Urdu-to-English machine translation.We conducted extensive Urdu-to-English translation experiments using Long short-term memory(LSTM)/Bidirectional recurrent neural networks(Bi-RNN)/Statistical recurrent unit(SRU)/Gated recurrent unit(GRU)/Convolutional neural network(CNN)and Transformer.Experimental results show that Bi-RNN and LSTM with attention mechanism trained iteratively,with a scalable data set,make precise predictions on unseen data.The trained models yielded competitive results by achieving 62.6%and 61%accuracy and 49.67 and 47.14 BLEU scores,respectively.From a qualitative perspective,the translation of the test sets was examined manually,and it was observed that trained models tend to produce repetitive output more frequently.The attention score produced by Bi-RNN and LSTM produced clear alignment,while GRU showed incorrect translation for words,poor alignment and lack of a clear structure.Therefore,we considered refining the attention-based models by defining an additional attention-based dropout layer.Attention dropout fixes alignment errors and minimizes translation errors at the word level.After empirical demonstration and comparison with their counterparts,we found improvement in the quality of the resulting translation system and a decrease in the perplexity and over-translation score.The ability of the proposed model was evaluated using Arabic-English and Persian-English datasets as well.We empirically concluded that adding an attention-based dropout layer helps improve GRU,SRU,and Transformer translation and is considerably more efficient in translation quality and speed.
基金This work was supported by an Institute of Information and Communications Technology Planning and Evaluation(IITP)grant funded by the Korean government(MSIT)(No.2022-0-00089Development of clustering and analysis technology to identify cyber-attack groups based on life-cycle)and the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade,Industry and Energy of Korean government under grant No.21-CM-EC-07.
文摘AI-related research is conducted in various ways,but the reliability of AI prediction results is currently insufficient,so expert decisions are indispensable for tasks that require essential decision-making.XAI(eXplainable AI)is studied to improve the reliability of AI.However,each XAI methodology shows different results in the same data set and exact model.This means that XAI results must be given meaning,and a lot of noise value emerges.This paper proposes the HFD(Hybrid Feature Dropout)-based XAI and evaluation methodology.The proposed XAI methodology can mitigate shortcomings,such as incorrect feature weights and impractical feature selection.There are few XAI evaluation methods.This paper proposed four evaluation criteria that can give practical meaning.As a result of verifying with the malware data set(Data Challenge 2019),we confirmed better results than other XAI methodologies in 4 evaluation criteria.Since the efficiency of interpretation is verified with a reasonable XAI evaluation standard,The practicality of the XAI methodology will be improved.In addition,The usefulness of the XAI methodology will be demonstrated to enhance the reliability of AI,and it helps apply AI results to essential tasks that require expert decision-making.
基金This work is supported by the National Natural Science Funds of China(Project No.U19B2036).
文摘Deep convolution neural networks are going deeper and deeper.How-ever,the complexity of models is prone to overfitting in training.Dropout,one of the crucial tricks,prevents units from co-adapting too much by randomly drop-ping neurons during training.It effectively improves the performance of deep net-works but ignores the importance of the differences between neurons.To optimize this issue,this paper presents a new dropout method called guided dropout,which selects the neurons to switch off according to the differences between the convo-lution kernel and preserves the informative neurons.It uses an unsupervised clus-tering algorithm to cluster similar neurons in each hidden layer,and dropout uses a certain probability within each cluster.Thereby this would preserve the hidden layer neurons with different roles while maintaining the model’s scarcity and gen-eralization,which effectively improves the role of the hidden layer neurons in learning the features.We evaluated our approach compared with two standard dropout networks on three well-established public object detection datasets.Experimental results on multiple datasets show that the method proposed in this paper has been improved on false positives,precision-recall curve and average precision without increasing the amount of computation.It can be seen that the increased performance of guided dropout is thanks to shallow learning in the net-works.The concept of guided dropout would be beneficial to the other vision tasks.
基金supported by the National Natural Science Foundation of China(No.61772231)the Natural Science Foundation of Shandong Province(No.ZR2022LZH016&No.ZR2017MF025)+3 种基金the Project of Shandong Provincial Social Science Program(No.18CHLJ39)the Shandong Provincial Key R&D Program of China(No.2021CXGC010103)the Shandong Provincial Teaching Research Project of Graduate Education(No.SDYAL2022102&No.SDYJG21034)the Teaching Research Project of University of Jinan(No.JZ2212)。
文摘Massive open online courses(MOOCs)have become a way of online learning across the world in the past few years.However,the extremely high dropout rate has brought many challenges to the development of online learning.Most of the current methods have low accuracy and poor generalization ability when dealing with high-dimensional dropout features.They focus on the analysis of the learning score and check result of online course,but neglect the phased student behaviors.Besides,the status of student participation at a given moment is necessarily impacted by the prior status of learning.To address these issues,this paper has proposed an ensemble learning model for early dropout prediction(ELM-EDP)that integrates attention-based document representation as a vector(A-Doc2vec),feature learning of course difficulty,and weighted soft voting ensemble with heterogeneous classifiers(WSV-HC).First,A-Doc2vec is proposed to learn sequence features of student behaviors of watching lecture videos and completing course assignments.It also captures the relationship between courses and videos.Then,a feature learning method is proposed to reduce the interference caused by the differences of course difficulty on the dropout prediction.Finally,WSV-HC is proposed to highlight the benefits of integration strategies of boosting and bagging.Experiments on the MOOCCube2020 dataset show that the high accuracy of our ELM-EDP has better results on Accuracy,Precision,Recall,and F1.
文摘为了揭示和改进标准的dropout,使用变领域搜索算法(Variable Neighborhood Search,VNS)的思想提出一种新的解释,将dropout看作是一种特殊的变领域搜索算法,训练不同的网络相当于在变化领域搜索最优解。同时提出一种新的正则化方法:dropoutVNS (Dropout Method Based On Variable Neighborhood Search)。DropoutVNS的核心思想是改变dropout切换网络的策略,将完全随机切换转变为稳定时再切换,以改善标准的dropout。在三个常用的图像实验集的实验结果表明,dropoutVNS可以减少训练时间,有效提高模型在图像分类上的预测准确率。