D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated...D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated areas. First, we choose seismic attributes that are most sensitive to CBM content changes with the guidance of CBM content measured at well sites. Then the selected seismic attributes are fused using D-S evidence theory and the fusion results are used to predict CBM-enriched area. The application shows that the predicted CBM content and the measured values are basically consistent. The results indicate that using D-S evidence theory in seismic multi-attribute fusion to predict CBM-enriched areas is feasible.展开更多
Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of se...Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.展开更多
In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in whic...In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in which the measurements of limited strain sensors arranged on the structure are used. Firstly, the structure is divided into several regions according to the similarity and the most unfavorable region is selected to be the key region for stress identification, while the different numbers of the strain sensors are located on the key region and the normal regions; secondly, the different stress distributions of the key region are obtained based on the measurements of the strain sensors located on the key region and the normal regions separately, in which the fuzzy pattern recognition is used to identify the different stress distributions; thirdly, the stress distributions obtained by the measurements of sensors in normal regions are selected to calculate the synthesized stress distribution of the key region by D-S evidence theory; fourthly, the weighted fusion algorithm is used to assign the different fusion coefficients to the selected stress distributions obtained by the measurements of the normal regions and the key region, while the synthesized stress distribution of the key region can be obtained. Numerical study on a lattice shell model is carried out to validate the reliability of the proposed stress identification method. The simulated results indicate that the method can improve identification accuracy and be effective by different noise disturbing.展开更多
Aiming at solving the problems such as time consuming and application limiting presented in the existing synchronous cooperative spectrum sensing schemes,a triggered asynchronous scheme based on Dempster-Shafer(D-S) t...Aiming at solving the problems such as time consuming and application limiting presented in the existing synchronous cooperative spectrum sensing schemes,a triggered asynchronous scheme based on Dempster-Shafer(D-S) theory was proposed.Sensing asynchronously,each cognitive user calculated the confidence measure functions with double threshold spectrum sensing method.When the useful report was received by the fusion center,a fusion process would be triggered.Then the sensing results were fused together based on D-S theory.The analysis and simulation results show that the proposed scheme can improve the spectrum sensing efficiency and reduce the calculation amount of the fusion center compared with the existing schemes.展开更多
In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. ...In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.展开更多
基金supported by the National Basic Research Program of China (973 Program) (No. 2009CB219603)Key Special National Project (No. 2008ZX05035)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated areas. First, we choose seismic attributes that are most sensitive to CBM content changes with the guidance of CBM content measured at well sites. Then the selected seismic attributes are fused using D-S evidence theory and the fusion results are used to predict CBM-enriched area. The application shows that the predicted CBM content and the measured values are basically consistent. The results indicate that using D-S evidence theory in seismic multi-attribute fusion to predict CBM-enriched areas is feasible.
基金supported by the National Natural Science Foundation of China under Grant No.60903166 the National High Technology Research and Development Program of China(863 Program) under Grants No.2012AA012506,No.2012AA012901,No.2012AA012903+9 种基金 Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20121103120032 the Humanity and Social Science Youth Foundation of Ministry of Education of China under Grant No.13YJCZH065 the Opening Project of Key Lab of Information Network Security of Ministry of Public Security(The Third Research Institute of Ministry of Public Security) under Grant No.C13613 the China Postdoctoral Science Foundation General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China under Grant No.km201410005012 the Research on Education and Teaching of Beijing University of Technology under Grant No.ER2013C24 the Beijing Municipal Natural Science Foundation Sponsored by Hunan Postdoctoral Scientific Program Open Research Fund of Beijing Key Laboratory of Trusted Computing Funds for the Central Universities, Contract No.2012JBM030
文摘Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.
文摘In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in which the measurements of limited strain sensors arranged on the structure are used. Firstly, the structure is divided into several regions according to the similarity and the most unfavorable region is selected to be the key region for stress identification, while the different numbers of the strain sensors are located on the key region and the normal regions; secondly, the different stress distributions of the key region are obtained based on the measurements of the strain sensors located on the key region and the normal regions separately, in which the fuzzy pattern recognition is used to identify the different stress distributions; thirdly, the stress distributions obtained by the measurements of sensors in normal regions are selected to calculate the synthesized stress distribution of the key region by D-S evidence theory; fourthly, the weighted fusion algorithm is used to assign the different fusion coefficients to the selected stress distributions obtained by the measurements of the normal regions and the key region, while the synthesized stress distribution of the key region can be obtained. Numerical study on a lattice shell model is carried out to validate the reliability of the proposed stress identification method. The simulated results indicate that the method can improve identification accuracy and be effective by different noise disturbing.
基金Science and Technology Projects of Xuzhou City,China(No.XX10A001)Jiangsu Provincial National Natural Science Foundation of China(No:BK20130199)
文摘Aiming at solving the problems such as time consuming and application limiting presented in the existing synchronous cooperative spectrum sensing schemes,a triggered asynchronous scheme based on Dempster-Shafer(D-S) theory was proposed.Sensing asynchronously,each cognitive user calculated the confidence measure functions with double threshold spectrum sensing method.When the useful report was received by the fusion center,a fusion process would be triggered.Then the sensing results were fused together based on D-S theory.The analysis and simulation results show that the proposed scheme can improve the spectrum sensing efficiency and reduce the calculation amount of the fusion center compared with the existing schemes.
基金Supported by National Natural Science Foundation of China(No.61774014 and No.60772080)
文摘In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.