期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于DSU-Net的黄土高原淤地坝智能识别
1
作者
侯景伟
朱默研
侯博
《湖南科技学院学报》
2023年第5期23-27,共5页
识别现有淤地坝的位置、规模和健康状况是“十四五”期间淤地坝规划、建设的基础,是防止水土流失的重要举措。建立了淤地坝影像切片数据集,将DenseNet169和SENet融合到U-Net,构建了DSU-Net深度学习模型。经过对数据集的训练和测试,DSU-...
识别现有淤地坝的位置、规模和健康状况是“十四五”期间淤地坝规划、建设的基础,是防止水土流失的重要举措。建立了淤地坝影像切片数据集,将DenseNet169和SENet融合到U-Net,构建了DSU-Net深度学习模型。经过对数据集的训练和测试,DSU-Net模型的准确率、F1 Score、均交并比和训练时间分别为97.00%、79.13%、81.14%和770 ms/step,DSU-Net识别淤地坝的精度高于U-Net和DU-Net等深度学习模型。DSU-Net模型能准确识别淤地坝的位置和形状,为黄土高原淤地坝的规划、建设、加固和维护、黄河流域生态保护和高质量发展提供技术支撑和决策支持。
展开更多
关键词
dsu-net
U-Net
淤地坝
智能识别
水土保持
下载PDF
职称材料
题名
基于DSU-Net的黄土高原淤地坝智能识别
1
作者
侯景伟
朱默研
侯博
机构
湖南科技学院土木与环境工程学院
宁夏大学地理科学与规划学院
湖南科技学院传媒学院
出处
《湖南科技学院学报》
2023年第5期23-27,共5页
基金
国家自然科学基金项目(41661026)
湖南省教育厅科学研究重点项目(22A0573)
湖南省自然科学基金面上项目(2023JJ30271)
文摘
识别现有淤地坝的位置、规模和健康状况是“十四五”期间淤地坝规划、建设的基础,是防止水土流失的重要举措。建立了淤地坝影像切片数据集,将DenseNet169和SENet融合到U-Net,构建了DSU-Net深度学习模型。经过对数据集的训练和测试,DSU-Net模型的准确率、F1 Score、均交并比和训练时间分别为97.00%、79.13%、81.14%和770 ms/step,DSU-Net识别淤地坝的精度高于U-Net和DU-Net等深度学习模型。DSU-Net模型能准确识别淤地坝的位置和形状,为黄土高原淤地坝的规划、建设、加固和维护、黄河流域生态保护和高质量发展提供技术支撑和决策支持。
关键词
dsu-net
U-Net
淤地坝
智能识别
水土保持
分类号
K909 [历史地理—人文地理学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于DSU-Net的黄土高原淤地坝智能识别
侯景伟
朱默研
侯博
《湖南科技学院学报》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部