The development of advanced biomaterials is crucial for addressing the increasing demand for improved medical implants and tissue engineering scaffolds. Hydroxyapatite (HAp), a naturally occurring mineral form of calc...The development of advanced biomaterials is crucial for addressing the increasing demand for improved medical implants and tissue engineering scaffolds. Hydroxyapatite (HAp), a naturally occurring mineral form of calcium apatite, is widely recognized for its excellent biocompatibility and osteoconductivity, making it an ideal candidate for bone-related applications. However, its brittleness and lack of flexibility limit its broader application in dynamic biological environments. To overcome these limitations, this study explores the synthesis of Hydroxyapatite/Alginate (HAp/Alg) nanocomposites, leveraging the biocompatibility and flexibility of alginate—a natural polysaccharide derived from brown seaweed. The HAp/Alg nanocomposites were synthesized using in situ hybridization techniques with varying alginate concentrations (10 to 40 wt%) to optimize their structural and functional properties. The motivation behind this work lies in the potential of these composites to combine the desirable properties of both HAp and alginate, resulting in a material that not only mimics the mineral composition of bone but also offers enhanced flexibility and structural integrity. A comprehensive analysis was conducted using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis/Differential Thermal Analysis (TGA/DTA), Scanning Electron Microscopy (SEM), and cytotoxicity testing to evaluate the structural, chemical, and biological properties of the composites. XRD analysis indicated a complex interaction between alginate concentration and crystal growth, with crystallite size increasing up to 10 wt% alginate before decreasing. FT-IR spectra confirmed significant biological reactivity at the composite’s surface and within the polymer matrix, suggesting strong potential for biological interactions. SEM images revealed a more uniform microstructure in HAp/Alg composites compared to pure HAp, which is likely to improve their performance in biomedical applications. TGA/DTA results demonstrated the thermal stability of the composites across various temperature conditions, while cytotoxicity tests confirmed their biocompatibility, making them suitable for use in medical applications. This study not only successfully synthesizes HAp/Alg nanocomposites with enhanced structural uniformity and biocompatibility but also provides a promising avenue for the development of next-generation biomaterials that could significantly impact the field of regenerative medicine and biomedical engineering.展开更多
Polymorphic calcium zincate has been successfully synthesized in alkaline solution at various concentrations as well as at different temperatures. SEM images indicated that the concentration of the alkaline solution a...Polymorphic calcium zincate has been successfully synthesized in alkaline solution at various concentrations as well as at different temperatures. SEM images indicated that the concentration of the alkaline solution affected significantly the morphology of the calcium zincate crystal. Calcium zincate crystalline changed from regular parallelogram to unregular small crashed grains at a higher alkali concentration. And hexagonal calcium zincate crystal was obtained at higher reaction temperature. The stoichiometric composition for calcium zincate was Ca(OH)2·2Zn(OH)2·(2n-2)H2O as analyzed by TG, where n decreased with the increase of the alkaline concentration. XRD analysis showed that the temperature affected differently the growth of each face of the crystal, which led to the hexagonal shape of calcium zincate crystal.展开更多
文摘The development of advanced biomaterials is crucial for addressing the increasing demand for improved medical implants and tissue engineering scaffolds. Hydroxyapatite (HAp), a naturally occurring mineral form of calcium apatite, is widely recognized for its excellent biocompatibility and osteoconductivity, making it an ideal candidate for bone-related applications. However, its brittleness and lack of flexibility limit its broader application in dynamic biological environments. To overcome these limitations, this study explores the synthesis of Hydroxyapatite/Alginate (HAp/Alg) nanocomposites, leveraging the biocompatibility and flexibility of alginate—a natural polysaccharide derived from brown seaweed. The HAp/Alg nanocomposites were synthesized using in situ hybridization techniques with varying alginate concentrations (10 to 40 wt%) to optimize their structural and functional properties. The motivation behind this work lies in the potential of these composites to combine the desirable properties of both HAp and alginate, resulting in a material that not only mimics the mineral composition of bone but also offers enhanced flexibility and structural integrity. A comprehensive analysis was conducted using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis/Differential Thermal Analysis (TGA/DTA), Scanning Electron Microscopy (SEM), and cytotoxicity testing to evaluate the structural, chemical, and biological properties of the composites. XRD analysis indicated a complex interaction between alginate concentration and crystal growth, with crystallite size increasing up to 10 wt% alginate before decreasing. FT-IR spectra confirmed significant biological reactivity at the composite’s surface and within the polymer matrix, suggesting strong potential for biological interactions. SEM images revealed a more uniform microstructure in HAp/Alg composites compared to pure HAp, which is likely to improve their performance in biomedical applications. TGA/DTA results demonstrated the thermal stability of the composites across various temperature conditions, while cytotoxicity tests confirmed their biocompatibility, making them suitable for use in medical applications. This study not only successfully synthesizes HAp/Alg nanocomposites with enhanced structural uniformity and biocompatibility but also provides a promising avenue for the development of next-generation biomaterials that could significantly impact the field of regenerative medicine and biomedical engineering.
文摘Polymorphic calcium zincate has been successfully synthesized in alkaline solution at various concentrations as well as at different temperatures. SEM images indicated that the concentration of the alkaline solution affected significantly the morphology of the calcium zincate crystal. Calcium zincate crystalline changed from regular parallelogram to unregular small crashed grains at a higher alkali concentration. And hexagonal calcium zincate crystal was obtained at higher reaction temperature. The stoichiometric composition for calcium zincate was Ca(OH)2·2Zn(OH)2·(2n-2)H2O as analyzed by TG, where n decreased with the increase of the alkaline concentration. XRD analysis showed that the temperature affected differently the growth of each face of the crystal, which led to the hexagonal shape of calcium zincate crystal.