期刊文献+
共找到141篇文章
< 1 2 8 >
每页显示 20 50 100
基于改进YOLOv4-tiny的果园复杂环境下桃果实实时识别
1
作者 苑迎春 张傲 +2 位作者 何振学 张若晨 雷浩 《中国农机化学报》 北大核心 2024年第8期254-261,共8页
为实现果园复杂环境下的桃果实实时识别,提出一种基于YOLOv4-tiny的桃果实实时识别方法 YOLOv4-tinyPeach。通过在主干网络中引入卷积注意力模块CBAM,优化其通道维度和空间维度的特征信息;在颈部网络中添加大尺度浅层特征层,提高对小目... 为实现果园复杂环境下的桃果实实时识别,提出一种基于YOLOv4-tiny的桃果实实时识别方法 YOLOv4-tinyPeach。通过在主干网络中引入卷积注意力模块CBAM,优化其通道维度和空间维度的特征信息;在颈部网络中添加大尺度浅层特征层,提高对小目标识别精度;采用双向特征金字塔网络BiFPN对不同尺度特征信息进行融合。通过训练和比较,YOLOv4-tiny-Peach模型在测试集下的平均精度AP为87.88%,准确率P为91.81%,召回率R为73.84%,F1值为81.85%,相比于改进前,AP提升5.46%,P提升2.29%,R提升4.09%,F1提升3.44%。为检验改进模型在果园复杂环境下的适应性,在不同数目、不同成熟期和遮挡的情况下对果实图像进行识别,并与原模型识别效果进行对比,结果表明改进模型在三种情况下的识别精度均高于原模型,尤其在大视场和未熟期场景下模型改进效果显著。YOLOv4-tiny-Peach模型占用内存为27.4 MB,识别速度为49.76 fps,适用于农业嵌入式设备。为果园复杂环境下的桃果实自动采摘提供实时精准的目标识别指导。 展开更多
关键词 采摘机器人 目标识别模型 YOLOv4-tiny 果园 实时
下载PDF
YOLOv4-tiny模型在边缘计算平台的加速设计
2
作者 赵洋 靳永强 王艺钢 《物联网技术》 2024年第1期93-97,共5页
近年来,随着目标检测算法的快速发展,其模型规模也越来越大,在嵌入式移动端中部署时往往存在着功耗和时延等限制。针对此问题,采用输入输出通道的并行组合策略、数据定点量化、多通道数据传输等硬件加速方法,设计了一种基于FPGA平台的... 近年来,随着目标检测算法的快速发展,其模型规模也越来越大,在嵌入式移动端中部署时往往存在着功耗和时延等限制。针对此问题,采用输入输出通道的并行组合策略、数据定点量化、多通道数据传输等硬件加速方法,设计了一种基于FPGA平台的目标检测加速器架构。以YOLOv4-tiny模型算法为例进行硬件加速设计实现,使用输入输出通道并行组合策略对加速器的输入输出模块进行优化,提高了带宽的利用率;采用双缓存结构对加速器的访存机制进行优化,提高了系统的传输效率,并对加速器的性能以及资源消耗情况进行评估、分析和验证。实验结果表明,在PYNQ-Z2平台上该架构的性能为10.96 GOPS,功耗为2.98 W。与已有研究中在FPGA平台部署目标检测算法的实验进行比较发现,本文所提出的加速器的加速效果更好。 展开更多
关键词 现场可编程门阵列 硬件加速器 YOLOv4-tiny 目标检测 边缘计算平台 深度学习
下载PDF
YOLOv4-Tiny的改进轻量级目标检测算法 被引量:9
3
作者 何湘杰 宋晓宁 《计算机科学与探索》 CSCD 北大核心 2024年第1期138-150,共13页
目标检测是深度学习的重要分支领域,大量的边缘设备需要轻量级的目标检测算法,但现有的轻量级的通用目标检测算法存在检测精度低、检测速度慢的问题。针对这一问题,提出了一种基于注意力机制的YOLOv4-Tiny的改进算法。调整了原有的YOLOv... 目标检测是深度学习的重要分支领域,大量的边缘设备需要轻量级的目标检测算法,但现有的轻量级的通用目标检测算法存在检测精度低、检测速度慢的问题。针对这一问题,提出了一种基于注意力机制的YOLOv4-Tiny的改进算法。调整了原有的YOLOv4-Tiny算法的主干网络的结构,引入了ECA注意力机制,使用空洞卷积改进了传统的SPP结构为DC-SPP结构,并提出了CSATT注意力机制,与特征融合网络PAN形成CSATT-PAN的颈部网络,提高了网络的特征融合能力。提出的YOLOv4-CSATT算法和原始YOLOv4-Tiny算法相比,在检测速度基本持平的情况下,对于信息的敏感程度以及分类的准确程度有了明显的提高,在VOC数据集上精度提高了12.3个百分点,在COCO数据集上高出了6.4个百分点。在VOC数据集上,相比Faster RCNN、SSD、Efficientdet-d1、YOLOv3-Tiny、YOLOv4-MobileNetv1、YOLOv4-MobileNetv2、PP-YOLO算法在精度上分别高出3.3、5.5、6.3、17.4、10.3、0.9和0.6个百分点,在召回率上分别高出2.8、7.1、4.2、18.0、12.2、2.1和4.0个百分点,FPS达到94。通过提出CSATT注意力机制提高了模型对于空间的通道信息的捕捉能力,并结合ECA注意力机制和特征融合金字塔算法,提高了模型的特征融合的能力以及目标检测精度。 展开更多
关键词 目标检测 YOLOv4-tiny算法 注意力机制 轻量级神经网络 特征融合
下载PDF
改进YOLOv4-Tiny的面向售货柜损害行为人体检测
4
作者 殷民 贾新春 +2 位作者 张学立 冯江涛 范晓宇 《计算机工程与应用》 CSCD 北大核心 2024年第8期234-241,共8页
无人货柜的安全检测一直是零售领域的热点话题。针对现有人工监控无法及时且有效地捕捉到部分消费者对自助售货柜及其内部商品的损坏行为这一问题,提出了一种改进YOLOv4-Tiny的面向售货柜损害行为人体检测方法。将真实场景采集到的监控... 无人货柜的安全检测一直是零售领域的热点话题。针对现有人工监控无法及时且有效地捕捉到部分消费者对自助售货柜及其内部商品的损坏行为这一问题,提出了一种改进YOLOv4-Tiny的面向售货柜损害行为人体检测方法。将真实场景采集到的监控视频进行预处理,完成对数据集DMGE-Act的制作,解决场景图像数据源不足的问题。提出了基于YOLOv4-Tiny的改进模型——YOLOv4-TinyX,通过修改神经网络的激活函数进行平滑逼近,分别在主干特征提取网络的最大特征提取层后引入CBAM,在加强特征提取网络中的上采样操作层后引入CA两种不同的注意力机制模块,并且进行了数据不平衡的修正,有效提升了算法的特征提取与检测能力。通过对比实验分析,改进后的模型参数量仅增加2×10^(4)的同时,平均精度均值mAP提升了10.29个百分点,结果表明该算法保持轻量化且对损害行为的检测精度有显著提升。 展开更多
关键词 无人值守 损害行为 YOLOv4-tiny 平滑逼近 注意力机制 轻量化
下载PDF
改进YOLOv4-tiny网络的日用商品目标检测算法
5
作者 王林枫 左云波 +2 位作者 徐小力 周可鑫 范博森 《计算机应用与软件》 北大核心 2024年第11期319-326,365,共9页
针对基于移动平台的商品图像检测算法存在硬件要求高、模型复杂且精度低等问题,提出一种YOLOv4-tiny改进网络,减少网络参数与模型尺寸,提高网络精度,构建更高效的网络。将原有标准卷积替换为点卷积与逐深度卷积,特征提取使用CG模块,降... 针对基于移动平台的商品图像检测算法存在硬件要求高、模型复杂且精度低等问题,提出一种YOLOv4-tiny改进网络,减少网络参数与模型尺寸,提高网络精度,构建更高效的网络。将原有标准卷积替换为点卷积与逐深度卷积,特征提取使用CG模块,降低网络模型计算损耗。特征融合时,在原有特征金字塔(Feature Pyramid Networks,FPN)基础上添加PANity模块,缩短高低间卷积层的跨度。使用CSPConcat结构对此前各层融合特征进行特征优化处理,提高各层间特征融合的能力。利用k-prototypes算法优化日用商品数据集先验框的尺寸与数目。通过在darknet深度学习框架下,对日用商品数据集进行实验,得出改进后的算法平均精度(mAP)为98%,召回率为97%,较原网络提升了2.4百分点和2百分点,网络模型计算量较原网络降低了40.4%,模型存储文件缩小了55.9%。改进后的网络模型更轻量化、准确率更高,更加适用于部署在无人结算环节的低硬件水平嵌入式设备中。 展开更多
关键词 新零售 嵌入式 目标检测 日用商品 YOLOv4-tiny
下载PDF
基于改进YOLOv4-tiny的节肢动物目标检测模型
6
作者 余咏 吴建平 +2 位作者 何旭鑫 韦杰 高雪豪 《计算机技术与发展》 2024年第1期114-120,共7页
针对自然环境下节肢动物背景复杂、形态万千、遮挡目标和目标尺度多样等因素,导致模型检测效率不高、边界框定位不准确的情况,提出一种基于改进YOLOv4-tiny的节肢动物目标检测模型。首先,结合空间、通道卷积注意力机制(CBAM),抑制背景噪... 针对自然环境下节肢动物背景复杂、形态万千、遮挡目标和目标尺度多样等因素,导致模型检测效率不高、边界框定位不准确的情况,提出一种基于改进YOLOv4-tiny的节肢动物目标检测模型。首先,结合空间、通道卷积注意力机制(CBAM),抑制背景噪声;其次,引入可变形卷积(DCN)以及改进的加权双向特征金字塔,重塑卷积和特征融合方式进行多尺度预测;最后,在FPN网络中引出一层Feat@3,嵌入空间金字塔池化结构,有效提取节肢动物的各种显著特征,使模型泛化能力更强,将改进后的模型命名为YOLOv4-tiny-ATO。实验结果表明,该模型在大小仅为54.6 Mb的前提下,很好地平衡了检测速度和检测精度,检测精度为0.725,检测速度达到89.6帧·s-1,召回率为0.585,较改进前相比YOLOv4-tiny模型,检测精度提高0.426,模型在模型大小、检测速度上更适用于移动端部署,模型检测精度也能达到应用标准,满足对节肢动物的检测需求。 展开更多
关键词 节肢动物 目标检测 可变形卷积 YOLOv4-tiny 双向特征金字塔
下载PDF
基于改进YOLOv4-Tiny算法的机械零件识别
7
作者 杨一帆 靳伍银 +1 位作者 薛文亮 王浩浩 《机械设计》 CSCD 北大核心 2024年第7期61-65,共5页
为实现机械零件的精准快速识别,文中提出了一种基于改进的YOLOv4-Tiny算法的机械零件识别方法。该方法融合了注意力机制和K-means++聚类算法,采用CSPDarknet53-Tiny网络作为主干网络,并将卷积注意力机制模块(Convolution Block Attentio... 为实现机械零件的精准快速识别,文中提出了一种基于改进的YOLOv4-Tiny算法的机械零件识别方法。该方法融合了注意力机制和K-means++聚类算法,采用CSPDarknet53-Tiny网络作为主干网络,并将卷积注意力机制模块(Convolution Block Attention Module, CBAM;Global Attention Mechanism, GAM)加在YOLOv4-Tiny主干网络与特征金字塔的连接处及其上采样处,在不影响主干网络的条件下,对每个通道的特征信息重新压缩并提取,过滤掉冗余特征信息,保留重要特征信息,并重新分配权重;再用K-means++聚类算法得到一组与机械零件图像数据集相匹配的先验框参数。试验结果表明,与传统的YOLOv4-Tiny算法相比,改进后的YOLOv4-Tiny算法在保证实时性的前提下,平均召回率和平均准确率分别达到99.43%和99.41%,可以准确检测并定位机械零件图像的位置。 展开更多
关键词 YOLOv4-tiny算法 机械零件识别 CBAM GAM K-means++聚类算法
下载PDF
基于改进的YOLOv4-tiny模型剪枝与量化
8
作者 李秉涛 何勇 《计算机与数字工程》 2024年第9期2721-2725,2770,共6页
针对YOLOv4-tiny存在计算量较大,检测精度低,无法满足嵌入式设备实时性需求的问题,论文基于MobileNetv3改进的轻量级网络YOLOv4-E,使用BN层的γ尺度因子对冗余的特征通道进行剪枝,在25%剪枝率下模型大小降低到了6.7MB,mAP仅降低了0.59%,... 针对YOLOv4-tiny存在计算量较大,检测精度低,无法满足嵌入式设备实时性需求的问题,论文基于MobileNetv3改进的轻量级网络YOLOv4-E,使用BN层的γ尺度因子对冗余的特征通道进行剪枝,在25%剪枝率下模型大小降低到了6.7MB,mAP仅降低了0.59%,FPS提升了8.8%。同时使用NCNN前向推理框架对剪枝后的模型进行Int8量化,在树莓派4B上检测单张图片仅需173 ms,满足了实时性需求。 展开更多
关键词 目标检测 YOLOv4-tiny 剪枝 嵌入式设备
下载PDF
基于改进YOLOV4-tiny的电力设备红外识别研究
9
作者 刘冲冲 张力平 +1 位作者 任锦飞 陈群元 《现代机械》 2024年第1期83-87,共5页
红外检测技术因其具有无需直接接触、带电状态进行检测、检测快速等优点,广泛应用于电力设备过热故障诊断领域。但是,红外图像质量不佳和电力设备的复杂分布等问题,对电力设备故障红外检测过程中的电力设备种类检测精度带来不利影响。... 红外检测技术因其具有无需直接接触、带电状态进行检测、检测快速等优点,广泛应用于电力设备过热故障诊断领域。但是,红外图像质量不佳和电力设备的复杂分布等问题,对电力设备故障红外检测过程中的电力设备种类检测精度带来不利影响。为了实现电力设备种类识别的快速准确检测,在YOLOV4-tiny目标检测算法的基础上,提出了适用于电力设备过热故障诊断过程设备种类识别的YOLOV4-tiny目标检测模型。通过旋转矩形框机制替换水平矩形框机制、改进激活函数和采用PAN+FPN加强特征提取网络的方式,来改进原检测模型,使其在检测时更精准更快速。通过多次实验验证,优化后的模型相较于YOLOV4、YOLOV4-tiny两种模型来说,检测速度没有明显提升,但其检测精度提升了1.89%,这为电力设备过热故障红外诊断过程中的设备种类识别研究带来了新的思路。 展开更多
关键词 红外检测 带电检测 旋转矩形 YOLOV4-tiny
下载PDF
基于YOLOv4-Tiny结构的小目标实时检测优化算法
10
作者 于海洋 张钊 吕瑞宏 《海军航空大学学报》 2024年第4期429-436,474,共9页
文章针对小目标实时检测的实际应用需求,以YOLOv4-Tiny结构为基本框架,使用ECANet重新设计MobileNetV3的Bneck结构并替换主特征提取网络CSPDarkNet53-Tiny,以提高模型的深度和检测速度;通过在其主干网络输出接口后增加SPPCSPC模块和使... 文章针对小目标实时检测的实际应用需求,以YOLOv4-Tiny结构为基本框架,使用ECANet重新设计MobileNetV3的Bneck结构并替换主特征提取网络CSPDarkNet53-Tiny,以提高模型的深度和检测速度;通过在其主干网络输出接口后增加SPPCSPC模块和使用路径聚合网络(PAN)替换特征金字塔(FPN),增强模型的感受野,汇聚多区域上下文信息,使每个特征层得到更加充分的语义信息和位置信息;在Head后融入CBAM注意力机制,增强有用信息并抑制无用信息,提高模型的检测精度。以口罩佩戴状态实时监测来验证提出的算法,实验结果表明,与YOLOv4-Tiny结构相比,该算法平均精度提升4.13%,达到91.84%,FPS提升4.4 frame/s,达到89.5 frame/s,满足口罩佩戴状态检测的实时性要求。 展开更多
关键词 YOLOv4-tiny结构 Bneck结构 SPPCSPC模块 路径聚合网络 CBAM注意力机制
下载PDF
基于改进YOLOv4-tiny的行人检测算法研究
11
作者 王京 高浩宁 《汽车实用技术》 2024年第16期40-43,共4页
在汽车智能化进程中,对于道路行人的检测研究是必不可少的,文章基于YOLOv4-tiny提出一种改进的行人检测算法,应用于车载小型摄像头。将空间金字塔池化结构(SPP)引入网络结构,通过SPP模块实现局部特征和全局特征的融合,丰富最终特征图的... 在汽车智能化进程中,对于道路行人的检测研究是必不可少的,文章基于YOLOv4-tiny提出一种改进的行人检测算法,应用于车载小型摄像头。将空间金字塔池化结构(SPP)引入网络结构,通过SPP模块实现局部特征和全局特征的融合,丰富最终特征图的表达能力;在特征层和上采样引入了坐标注意力(CA)机制,从通道和空间两方面对图像特征进行有效关注;实验采用PASCALVOC-2007数据集进行训练和验证。实验结果表明,改进后的算法在VOC数据集中,平均精度提高了3.84%,F1值为0.80,查准率提高了0.77%,查全率为73.95%,平均准确率均值(mAP)提高了8.79%,在保证算法速率的同时提高了检测精度。该研究为汽车智能化行驶过程中的行人检测提供了建议。 展开更多
关键词 深度学习 注意力机制 智能驾驶 行人检测 YOLOv4-tiny
下载PDF
基于YOLOv4-Tiny的硬件加速系统的设计与实现
12
作者 姜明飞 冯凤阳 +2 位作者 冯赟 魏天东 陆山 《电脑知识与技术》 2024年第10期11-14,共4页
随着神经网络算法的迅猛发展,将其部署在边缘设备上面临着功耗和计算时间的制约。针对YOLOv4-Tiny算法在资源受限的边缘端部署困难等问题,文章提出了一项软硬件协同优化策略。为了提升硬件资源使用率和推理效能,文章采用了输入输出通道... 随着神经网络算法的迅猛发展,将其部署在边缘设备上面临着功耗和计算时间的制约。针对YOLOv4-Tiny算法在资源受限的边缘端部署困难等问题,文章提出了一项软硬件协同优化策略。为了提升硬件资源使用率和推理效能,文章采用了输入输出通道与权重通道的双重缓冲机制,并在此基础上,结合双缓冲结构与强化的高度并行流水线设计,开发了一种基于ZynqFPGA硬件平台的目标检测加速系统。实验结果显示,该系统在ZynqKV260平台上的运行功耗仅为3.712W,单帧推理时间缩短至0.43s,与现有的FPGA硬件加速器平台相比,实现了更优的性能表现。 展开更多
关键词 YOLOv4-tiny 目标检测 卷积神经网络 硬件加速系统 现场可编程门阵列
下载PDF
基于改进YOLOv4-Tiny的交通车辆实时目标检测 被引量:4
13
作者 杨志军 昌新萌 丁洪伟 《无线电工程》 北大核心 2023年第11期2635-2644,共10页
针对传统交通车辆实时检测技术在检测速度和准确性等方面存在的问题,提出了改进型YOLOv4-Tiny交通车辆图像实时检测模型。改进该模型的CSPResNet和空间金字塔池化(Spatial Pyramid Pooling,SPP),减少模型的计算量;改进特征金字塔网络(Fe... 针对传统交通车辆实时检测技术在检测速度和准确性等方面存在的问题,提出了改进型YOLOv4-Tiny交通车辆图像实时检测模型。改进该模型的CSPResNet和空间金字塔池化(Spatial Pyramid Pooling,SPP),减少模型的计算量;改进特征金字塔网络(Feature Pyramid Network,FPN)及使用池化特征增强方法,增加少量计算量,获取模型的多尺度特征图以提升精度;引入注意力机制,增强模型对通道和空间特征的关注。实验结果表明,改进的YOLOv4-Tiny算法相比原YOLOv4-Tiny算法,模型平均精度均值(mean Average Precision,mAP)提升了4.67%,检测速度提升了2.5帧/秒,模型大小减少了52.74%,能够满足交通车辆实时检测对精度和实时性的要求。 展开更多
关键词 实时检测 注意力机制 YOLOv4-tiny 图像处理 金字塔池化
下载PDF
基于改进YOLOv4-Tiny的矿井电机车多目标实时检测 被引量:2
14
作者 郭永存 杨豚 王爽 《工程科学与技术》 EI CAS CSCD 北大核心 2023年第5期232-241,共10页
为解决煤矿巷道环境恶劣及人工疲劳驾驶电机车导致煤矿井下有轨电机车事故频发的问题,提出一种基于改进YOLOv4-Tiny算法的YOLOv4-Tiny-4S矿井电机车多目标实时检测方法。首先,为了提高网络模型对于小目标的检测能力,将传统YOLOv4-Tiny... 为解决煤矿巷道环境恶劣及人工疲劳驾驶电机车导致煤矿井下有轨电机车事故频发的问题,提出一种基于改进YOLOv4-Tiny算法的YOLOv4-Tiny-4S矿井电机车多目标实时检测方法。首先,为了提高网络模型对于小目标的检测能力,将传统YOLOv4-Tiny的两尺度预测增加至4尺度预测,并且在网络模型的颈部引入空间金字塔池化(spatial pyramid pooling,SPP)模块,以丰富特征融合信息,增大网络模型的感受野。其次,以煤矿巷道中的行人、电机车、信号灯及碎石作为检测目标,创建矿井电机车多目标检测数据集,并分别采用K-means和K-means++聚类分析算法对数据集重新聚类;对比分析结果表明,K-means++算法具有更好的聚类效果。最后,通过对传统YOLOv4-Tiny算法的消融实验,进一步展示了不同改进措施对网络模型检测性能的影响;并在电机车运行的煤矿巷道场景中,对比分析了YOLOv4-Tiny-4S算法与其他几种算法的检测性能。实验结果表明:YOLOv4-Tiny-4S算法能够准确检测并识别出图像中的各类目标,其平均精度均值(mean average precision,mAP)为95.35%,对小目标“碎石”的平均精度(average precision,AP)为86.69%,相比传统YOLOv4-Tiny算法分别提高了12.38%和41.66%;改进后算法的平均检测速度达58.7帧/s(frames per second,FPS),模型内存仅为26.3 Mb,YOLOv4-Tiny-4S算法的检测性能优于其他算法。本文提出的基于YOLOv4-Tiny-4S矿井电机车多目标实时检测方法可为实现矿井电机车的无人驾驶提供技术支撑。 展开更多
关键词 矿井电机车 YOLOv4-tiny 多目标实时检测 无人驾驶
下载PDF
基于轻量化模型YOLOv4-tiny的目标检测改进 被引量:1
15
作者 张军 郑黎明 刘先禄 《阜阳师范大学学报(自然科学版)》 2023年第2期58-65,共8页
针对实际场景中需要高速检测但硬件设备的处理器性能较弱,不能得到应有的检测效果的问题,本文以YOLOv4-tiny作为框架,提出一种轻量化模型的方法。首先构建空间金字塔空洞卷积(Spatial-pyramid-dilation, SPD)模块,提取更多目标特征;其... 针对实际场景中需要高速检测但硬件设备的处理器性能较弱,不能得到应有的检测效果的问题,本文以YOLOv4-tiny作为框架,提出一种轻量化模型的方法。首先构建空间金字塔空洞卷积(Spatial-pyramid-dilation, SPD)模块,提取更多目标特征;其次减少跨级部分(Cross-Stage-Partial,CSP)模块的第二分支的一个Concate,增加1×1卷积,降低网络的计算复杂度;最后将压缩激活(Squeeze-and-excitation,SE)模块置于CSP模块之前,提升检测性能,通过轻量化特征增强网络能够改善对小目标检测效果。实验结果表明,改进后的模型相较于原YOLOv4-tiny,平均精确率提升了6.3%,平均查全率提升了3.9%,实现了YOLOv4-tiny的轻量化改进。改进后模型轻量化程度较大,能够实现高速检测,适宜在性能较弱的移动设备上部署。 展开更多
关键词 YOLOv4-tiny 目标检测 通道注意力 轻量化 高速检测
下载PDF
基于YOLOv4-tiny的安全帽检测算法研究
16
作者 赵建光 韩泽山 +1 位作者 范晶晶 张君秋 《河北建筑工程学院学报》 CAS 2023年第4期240-245,共6页
为了可以有效监管施工人员佩戴安全帽的情况,使用YOLOv4-tiny目标检测算法进行佩戴安全帽检测。YOLOv4-tiny模型在维持精确度的同时,计算量更少,检测速度更快,更适用于实时的安全帽佩戴检测。但是YOLOv4-tiny在复杂的工作场景中容易出... 为了可以有效监管施工人员佩戴安全帽的情况,使用YOLOv4-tiny目标检测算法进行佩戴安全帽检测。YOLOv4-tiny模型在维持精确度的同时,计算量更少,检测速度更快,更适用于实时的安全帽佩戴检测。但是YOLOv4-tiny在复杂的工作场景中容易出现错检或漏检情况。为解决这一问题,在原模型的基础上添加CBAM、SE、ECA、CA注意力机制,将几种不同的注意力机制进行比较,解决模型检测效果差的问题,使用改进的YOLOv4-tiny算法可以更好地完成安全帽检测任务。 展开更多
关键词 安全帽检测 YOLOv4-tiny 注意力机制 检测效果
下载PDF
基于改进yolov4-tiny的夜间车牌检测算法
17
作者 王晓云 张航 +1 位作者 郭金玉 孙海英 《装备制造技术》 2023年第3期90-92,97,共4页
针对夜间车牌检测问题,选用yolov4-tiny作为主干网络,基于Retinex理论的SSR算法改进,提出一种夜间车牌检测算法。该算法是基于Retinex理论的SSR算法的改进,通过相应的变换将正常光照下的图像转换为不同光照程度下的夜间环境图像,由此产... 针对夜间车牌检测问题,选用yolov4-tiny作为主干网络,基于Retinex理论的SSR算法改进,提出一种夜间车牌检测算法。该算法是基于Retinex理论的SSR算法的改进,通过相应的变换将正常光照下的图像转换为不同光照程度下的夜间环境图像,由此产生了更多的夜间环境的数据集,提高数据集的多样性,使训练模型获得更高的准确率和召回率,并能有更高的鲁棒性,从而提高夜间车牌检测的效果。选用Yolov4-tiny网络,使用DSSR算法作为数据增强策略进行训练实验的最终结果显示,使用DSSR算法的模型map比未使用的提高1.18%。结合训练过程的loss来看,该算法起到了数据增强的预期效果,扩充了数据集,提高夜间车牌检测的精度,提高了夜间车牌检测效果。 展开更多
关键词 车牌检测 深度学习 数据增强 Yolov4-tiny RETINEX
下载PDF
基于YOLOv4-tiny改进的交通标志识别算法
18
作者 刘毅 安移 《计算机与数字工程》 2023年第3期618-622,644,共6页
针对交通标志目标识别精度较低、速度慢并且模型参数量过大的问题,论文提出一种改进YOLOv4-tiny识别算法,在特征提取阶段引入深度可分离卷积轻量化主干网络并降低模型的参数量和计算量。在特征融合阶段使用递归特征金字塔(RFP)进行多尺... 针对交通标志目标识别精度较低、速度慢并且模型参数量过大的问题,论文提出一种改进YOLOv4-tiny识别算法,在特征提取阶段引入深度可分离卷积轻量化主干网络并降低模型的参数量和计算量。在特征融合阶段使用递归特征金字塔(RFP)进行多尺度特征融合。在TT100K数据集上验证改进算法的平均精度均值达到88.5%,相比YOLOv4-tiny提升4.6%,模型大小仅为17MB是YOLOv4-tiny的56%,改进算法降低了模型大小和计算量并提升检测精度和速度。 展开更多
关键词 深度可分离卷积 递归特征金字塔 交通标志识别 YOLOv4-tiny
下载PDF
基于改进YOLOv4-Tiny轻量化校内行人目标检测算法 被引量:3
19
作者 孙好 董兴法 +1 位作者 王军 陈致远 《计算机工程与应用》 CSCD 北大核心 2023年第15期97-106,共10页
深度学习常用于行人检测,为了在嵌入式设备上应用复杂的传统卷积神经网络,网络的轻量化是必然趋势,但难以兼顾速度和精度。为解决这个问题,设计了一种基于改进YOLOv4-Tiny的轻量化校内行人目标检测算法。提出了一种多尺度空洞卷积模块... 深度学习常用于行人检测,为了在嵌入式设备上应用复杂的传统卷积神经网络,网络的轻量化是必然趋势,但难以兼顾速度和精度。为解决这个问题,设计了一种基于改进YOLOv4-Tiny的轻量化校内行人目标检测算法。提出了一种多尺度空洞卷积模块的改进Ghost卷积特征提取模块,同时普通卷积用深度可分离卷积代替,降低了模型复杂度,增加特征提取的多样性;构建了一种空洞深度可分离卷积的改进空间金字塔池化结构,增强上下文特征的融合,提高检测精度,减少网络参数;再引入Soft-NMS取代传统非极大值抑制,降低漏检率。实验结果表明,该算法在多个数据集和硬件平台上,其具有精度高、速度快、模型参数少和体积少等特点,可以应用于嵌入式设备。 展开更多
关键词 校内行人 深度学习 YOLOv4-tiny Ghost卷积 非极大值抑制
下载PDF
基于网络瘦身算法的YOLOv4-tiny的甘蔗茎节识别 被引量:1
20
作者 陈文 余康 +3 位作者 李岩舟 陈远玲 胡珊珊 乔曦 《中国农机化学报》 北大核心 2023年第2期172-181,共10页
为提高智能甘蔗收获的准确性,降低算法对部署的高算力要求,利用轻量级目标检测算法YOLOv4-tiny相对YOLOv4算法更简化的网络结构、更高的推理速度等优点,提出基于MobileNet和网络瘦身的两种YOLOv4-ting识别算法方案,并比较二者的精度和... 为提高智能甘蔗收获的准确性,降低算法对部署的高算力要求,利用轻量级目标检测算法YOLOv4-tiny相对YOLOv4算法更简化的网络结构、更高的推理速度等优点,提出基于MobileNet和网络瘦身的两种YOLOv4-ting识别算法方案,并比较二者的精度和模型复杂度。其中,基于网络瘦身算法的YOLOv4-tiny在精度较瘦身前(94.7%)下降0.6%的情况下,模型复杂度下降为原来的1/3,即瘦身后的FLOPs和Params分别为1.1 G和1 789 658。而以MobileNet为Backbone的YOLOv4-tiny在精度下降1.92%的情况下,它的FLOPs和Params为1.29 G、2 600 068,其在精度和模型复杂度上的表现都不如瘦身后的YOLOv4-tiny模型。结果表明:基于网络瘦身算法的YOLOv4-tiny甘蔗茎节识别模型可有效降低模型复杂度,其计算量对嵌入式设备和移动式设备友好。该研究可为智能甘蔗收割机构的开发提供技术参考。 展开更多
关键词 MobileNet 网络瘦身 YOLOv4-tiny 甘蔗茎节
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部