Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
With the continuous development of big data technology,the digital transformation of enterprise human resource management has become a development trend.Human resources is one of the most important resources of enterp...With the continuous development of big data technology,the digital transformation of enterprise human resource management has become a development trend.Human resources is one of the most important resources of enterprises,which is crucial to the competitiveness of enterprises.Enterprises need to attract,retain,and motivate excellent employees,thereby enhancing the innovation ability of enterprises and improving competitiveness and market share in the market.To maintain advantages in the fierce market competition,enterprises need to adopt more scientific and effective human resource management methods to enhance organizational efficiency and competitiveness.At the same time,this paper analyzes the dilemma faced by enterprise human resource management,points out the new characteristics of enterprise human resource management enabled by big data,and puts forward feasible suggestions for enterprise digital transformation.展开更多
Modern large-scale enterprise systems produce large volumes of logs that record detailed system runtime status and key events at key points.These logs are valuable for analyzing performance issues and understanding th...Modern large-scale enterprise systems produce large volumes of logs that record detailed system runtime status and key events at key points.These logs are valuable for analyzing performance issues and understanding the status of the system.Anomaly detection plays an important role in service management and system maintenance,and guarantees the reliability and security of online systems.Logs are universal semi-structured data,which causes difficulties for traditional manual detection and pattern-matching algorithms.While some deep learning algorithms utilize neural networks to detect anomalies,these approaches have an over-reliance on manually designed features,resulting in the effectiveness of anomaly detection depending on the quality of the features.At the same time,the aforementioned methods ignore the underlying contextual information present in adjacent log entries.We propose a novel model called Logformer with two cascaded transformer-based heads to capture latent contextual information from adjacent log entries,and leverage pre-trained embeddings based on logs to improve the representation of the embedding space.The proposed model achieves comparable results on HDFS and BGL datasets in terms of metric accuracy,recall and F1-score.Moreover,the consistent rise in F1-score proves that the representation of the embedding spacewith pre-trained embeddings is closer to the semantic information of the log.展开更多
This paper focuses on the integration and data transformation between GPS and totalstation.It emphasizes on the way to transfer the WGS84 Cartesian coordinates to the local two_dimensional plane coordinates and the or...This paper focuses on the integration and data transformation between GPS and totalstation.It emphasizes on the way to transfer the WGS84 Cartesian coordinates to the local two_dimensional plane coordinates and the orthometric height GPS receiver,totalstation,radio,notebook computer and the corresponding software work together to form a new surveying system,the super_totalstation positioning system(SPS) and a new surveying model for terrestrial surveying.With the help of this system,the positions of detail points can be measured.展开更多
Reversible data hiding is an information hiding technique that requires the retrieval of the error free cover image after the extraction of the secret image.We suggested a technique in this research that uses a recurs...Reversible data hiding is an information hiding technique that requires the retrieval of the error free cover image after the extraction of the secret image.We suggested a technique in this research that uses a recursive embedding method to increase capacity substantially using the Integer wavelet transform and the Arnold transform.The notion of Integer wavelet transforms is to ensure that all coefficients of the cover images are used during embedding with an increase in payload.By scrambling the cover image,Arnold transform adds security to the information that gets embedded and also allows embedding more information in each iteration.The hybrid combination of Integer wavelet transform and Arnold transform results to build a more efficient and secure system.The proposed method employs a set of keys to ensure that information cannot be decoded by an attacker.The experimental results show that it aids in the development of a more secure storage system and withstand few tampering attacks The suggested technique is tested on many image formats,including medical images.Various performance metrics proves that the retrieved cover image and hidden image are both intact.This System is proven to withstand rotation attack as well.展开更多
The imbalance of dissolved gas analysis(DGA)data will lead to over-fitting,weak generalization and poor recognition performance for fault diagnosis models based on deep learning.To handle this problem,a novel transfor...The imbalance of dissolved gas analysis(DGA)data will lead to over-fitting,weak generalization and poor recognition performance for fault diagnosis models based on deep learning.To handle this problem,a novel transformer fault diagnosis method based on improved auxiliary classifier generative adversarial network(ACGAN)under imbalanced data is proposed in this paper,which meets both the requirements of balancing DGA data and supplying accurate diagnosis results.The generator combines one-dimensional convolutional neural networks(1D-CNN)and long short-term memories(LSTM),which can deeply extract the features from DGA samples and be greatly beneficial to ACGAN’s data balancing and fault diagnosis.The discriminator adopts multilayer perceptron networks(MLP),which prevents the discriminator from losing important features of DGA data when the network is too complex and the number of layers is too large.The experimental results suggest that the presented approach can effectively improve the adverse effects of DGA data imbalance on the deep learning models,enhance fault diagnosis performance and supply desirable diagnosis accuracy up to 99.46%.Furthermore,the comparison results indicate the fault diagnosis performance of the proposed approach is superior to that of other conventional methods.Therefore,the method presented in this study has excellent and reliable fault diagnosis performance for various unbalanced datasets.In addition,the proposed approach can also solve the problems of insufficient and imbalanced fault data in other practical application fields.展开更多
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
针对图像识别中获取全局特征的局限性及难以提升识别准确性的问题,提出一种基于随机增强Swin-Tiny Transformer轻量级模型的图像识别方法.该方法在预处理阶段结合基于随机数据增强(random data augmentation based enhancement,RDABE)...针对图像识别中获取全局特征的局限性及难以提升识别准确性的问题,提出一种基于随机增强Swin-Tiny Transformer轻量级模型的图像识别方法.该方法在预处理阶段结合基于随机数据增强(random data augmentation based enhancement,RDABE)算法对图像特征进行增强,并采用Transformer的自注意力机制,以获得更全面的高层视觉语义信息.通过在玉米病害数据集上优化Swin-Tiny Transformer模型并进行参数微调,在农业领域的玉米病害上验证了该算法的适用性,实现了更精确的病害检测.实验结果表明,基于随机增强的轻量级Swin-Tiny+RDABE模型对玉米病害图像识别准确率达93.5867%.在参数权重一致,与性能优秀的轻量级Transformer、卷积神经网络(CNN)系列模型对比的实验结果表明,改进的模型准确率比Swin-Tiny Transformer,Deit3_Small,Vit_Small,Mobilenet_V3_Small,ShufflenetV2和Efficientnet_B1_Pruned模型提高了1.1877%~4.9881%,且能迅速收敛.展开更多
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.
文摘With the continuous development of big data technology,the digital transformation of enterprise human resource management has become a development trend.Human resources is one of the most important resources of enterprises,which is crucial to the competitiveness of enterprises.Enterprises need to attract,retain,and motivate excellent employees,thereby enhancing the innovation ability of enterprises and improving competitiveness and market share in the market.To maintain advantages in the fierce market competition,enterprises need to adopt more scientific and effective human resource management methods to enhance organizational efficiency and competitiveness.At the same time,this paper analyzes the dilemma faced by enterprise human resource management,points out the new characteristics of enterprise human resource management enabled by big data,and puts forward feasible suggestions for enterprise digital transformation.
基金supported by the National Natural Science Foundation of China (Nos.62072074,62076054,62027827,61902054,62002047)the Frontier Science and Technology Innovation Projects of National Key R&D Program (No.2019QY1405)+1 种基金the Sichuan Science and Technology Innovation Platform and Talent Plan (No.2020TDT00020)the Sichuan Science and Technology Support Plan (No.2020YFSY0010).
文摘Modern large-scale enterprise systems produce large volumes of logs that record detailed system runtime status and key events at key points.These logs are valuable for analyzing performance issues and understanding the status of the system.Anomaly detection plays an important role in service management and system maintenance,and guarantees the reliability and security of online systems.Logs are universal semi-structured data,which causes difficulties for traditional manual detection and pattern-matching algorithms.While some deep learning algorithms utilize neural networks to detect anomalies,these approaches have an over-reliance on manually designed features,resulting in the effectiveness of anomaly detection depending on the quality of the features.At the same time,the aforementioned methods ignore the underlying contextual information present in adjacent log entries.We propose a novel model called Logformer with two cascaded transformer-based heads to capture latent contextual information from adjacent log entries,and leverage pre-trained embeddings based on logs to improve the representation of the embedding space.The proposed model achieves comparable results on HDFS and BGL datasets in terms of metric accuracy,recall and F1-score.Moreover,the consistent rise in F1-score proves that the representation of the embedding spacewith pre-trained embeddings is closer to the semantic information of the log.
文摘This paper focuses on the integration and data transformation between GPS and totalstation.It emphasizes on the way to transfer the WGS84 Cartesian coordinates to the local two_dimensional plane coordinates and the orthometric height GPS receiver,totalstation,radio,notebook computer and the corresponding software work together to form a new surveying system,the super_totalstation positioning system(SPS) and a new surveying model for terrestrial surveying.With the help of this system,the positions of detail points can be measured.
文摘Reversible data hiding is an information hiding technique that requires the retrieval of the error free cover image after the extraction of the secret image.We suggested a technique in this research that uses a recursive embedding method to increase capacity substantially using the Integer wavelet transform and the Arnold transform.The notion of Integer wavelet transforms is to ensure that all coefficients of the cover images are used during embedding with an increase in payload.By scrambling the cover image,Arnold transform adds security to the information that gets embedded and also allows embedding more information in each iteration.The hybrid combination of Integer wavelet transform and Arnold transform results to build a more efficient and secure system.The proposed method employs a set of keys to ensure that information cannot be decoded by an attacker.The experimental results show that it aids in the development of a more secure storage system and withstand few tampering attacks The suggested technique is tested on many image formats,including medical images.Various performance metrics proves that the retrieved cover image and hidden image are both intact.This System is proven to withstand rotation attack as well.
基金The authors gratefully acknowledge financial support of national natural science foundation of China(No.52067021)natural science foundation of Xinjiang Uygur Autonomous Region(2022D01C35)+1 种基金excellent youth scientific and technological talents plan of Xinjiang(No.2019Q012)major science&technology special project of Xinjiang Uygur Autonomous Region(2022A01002-2).
文摘The imbalance of dissolved gas analysis(DGA)data will lead to over-fitting,weak generalization and poor recognition performance for fault diagnosis models based on deep learning.To handle this problem,a novel transformer fault diagnosis method based on improved auxiliary classifier generative adversarial network(ACGAN)under imbalanced data is proposed in this paper,which meets both the requirements of balancing DGA data and supplying accurate diagnosis results.The generator combines one-dimensional convolutional neural networks(1D-CNN)and long short-term memories(LSTM),which can deeply extract the features from DGA samples and be greatly beneficial to ACGAN’s data balancing and fault diagnosis.The discriminator adopts multilayer perceptron networks(MLP),which prevents the discriminator from losing important features of DGA data when the network is too complex and the number of layers is too large.The experimental results suggest that the presented approach can effectively improve the adverse effects of DGA data imbalance on the deep learning models,enhance fault diagnosis performance and supply desirable diagnosis accuracy up to 99.46%.Furthermore,the comparison results indicate the fault diagnosis performance of the proposed approach is superior to that of other conventional methods.Therefore,the method presented in this study has excellent and reliable fault diagnosis performance for various unbalanced datasets.In addition,the proposed approach can also solve the problems of insufficient and imbalanced fault data in other practical application fields.
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
文摘针对图像识别中获取全局特征的局限性及难以提升识别准确性的问题,提出一种基于随机增强Swin-Tiny Transformer轻量级模型的图像识别方法.该方法在预处理阶段结合基于随机数据增强(random data augmentation based enhancement,RDABE)算法对图像特征进行增强,并采用Transformer的自注意力机制,以获得更全面的高层视觉语义信息.通过在玉米病害数据集上优化Swin-Tiny Transformer模型并进行参数微调,在农业领域的玉米病害上验证了该算法的适用性,实现了更精确的病害检测.实验结果表明,基于随机增强的轻量级Swin-Tiny+RDABE模型对玉米病害图像识别准确率达93.5867%.在参数权重一致,与性能优秀的轻量级Transformer、卷积神经网络(CNN)系列模型对比的实验结果表明,改进的模型准确率比Swin-Tiny Transformer,Deit3_Small,Vit_Small,Mobilenet_V3_Small,ShufflenetV2和Efficientnet_B1_Pruned模型提高了1.1877%~4.9881%,且能迅速收敛.