Domain of unknown function (DUF) proteins represent a number of gene families that encode functionally uncharacterized proteins in eukaryotes. For example, DUF1618 family members in plants possess a 56-199-amino aci...Domain of unknown function (DUF) proteins represent a number of gene families that encode functionally uncharacterized proteins in eukaryotes. For example, DUF1618 family members in plants possess a 56-199-amino acid conserved domain and this family has not been described previously. Here, we report the characterization of 121 DUF1618 genes identified in the rice genome. Based on phylogenetic analysis, the rice DUF1618 family was divided into two major groups, each group consisting of two clades. Most DUF1618 genes with close phylogenetic relationships are located in gene clusters on the chromosomes, indicating that gene duplications increased the number of DUF1618 genes. A search for DUF1618 genes in genomic and/or expressed sequence tag databases for 35 other plant species showed that DUF1618 genes are only present in several monocot plants, suggesting that DUF1618 is a new gene family that originated after the dicot-monocot divergence. Based on public microarray databases, most rice DUF1618 genes are expressed at relatively low levels. Further experimental analysis showed that the transcriptional levels of some DUF1618 genes varied in different cultivars, and some responded to stress and hormone conditions, suggesting their important roles for development and fitness in rice (Oryza sativa L.).展开更多
Molecular mechanisms of hybrid breakdown associated with sterility (F<sub>2</sub> sterility) are poorly understood as compared with those of F<sub>1</sub> hybrid sterility. Previously, we chara...Molecular mechanisms of hybrid breakdown associated with sterility (F<sub>2</sub> sterility) are poorly understood as compared with those of F<sub>1</sub> hybrid sterility. Previously, we characterized three unlinked epistatic loci, hybrid sterility-a1 (hsa1), hsa2, and hsa3, responsible for the F<sub>2</sub> sterility in a cross between Oryza sativa ssp. indica and japonica. In this study, we identified that the hsa1 locus contains two interacting genes, HSA1a and HSA1b, within a 30-kb region. HSA1a-j (japonica allele) encodes a highly conserved plant-specific domain of unknown function protein (DUF1618), whereasthe indica allele (HSA1a-i<sup>s</sup>) has two deletion mutations that cause disruption of domain structure. The second gene, HSA1b-i<sup>s</sup>, encodes an uncharacterized proteinwith some similarity to a nucleotide-binding protein. Homozygous introgression of indica HSA1a-i<sup>s</sup>-HSA1b-i<sup>s</sup> alleles into japonica showed female gamete abortion at an early mitotic stage. The fact that the recombinant haplotype HSA1a-j-HSA1b-i<sup>s</sup> caused semi-sterility in the heterozygous state with the HSA1a-i<sup>s</sup>-HSA1b-i<sup>s</sup> haplotype suggests that variation in the hsa1 locus is a possible cause of the wide-spectrum sterility barriers seen in F<sub>1</sub> hybrids and successive generations in rice. We propose a simple genetic model to explain how a single causal mechanism can drive both F<sub>1</sub> and F<sub>2</sub> hybrid sterility.展开更多
基金supported by the National Natural Science Foundation of China (30800597)the Natural Science Foundation of Guangdong Province (8451064201001015)the New Teacher Foundation of Chinese Colleges and Universities (20094404120018)
文摘Domain of unknown function (DUF) proteins represent a number of gene families that encode functionally uncharacterized proteins in eukaryotes. For example, DUF1618 family members in plants possess a 56-199-amino acid conserved domain and this family has not been described previously. Here, we report the characterization of 121 DUF1618 genes identified in the rice genome. Based on phylogenetic analysis, the rice DUF1618 family was divided into two major groups, each group consisting of two clades. Most DUF1618 genes with close phylogenetic relationships are located in gene clusters on the chromosomes, indicating that gene duplications increased the number of DUF1618 genes. A search for DUF1618 genes in genomic and/or expressed sequence tag databases for 35 other plant species showed that DUF1618 genes are only present in several monocot plants, suggesting that DUF1618 is a new gene family that originated after the dicot-monocot divergence. Based on public microarray databases, most rice DUF1618 genes are expressed at relatively low levels. Further experimental analysis showed that the transcriptional levels of some DUF1618 genes varied in different cultivars, and some responded to stress and hormone conditions, suggesting their important roles for development and fitness in rice (Oryza sativa L.).
文摘Molecular mechanisms of hybrid breakdown associated with sterility (F<sub>2</sub> sterility) are poorly understood as compared with those of F<sub>1</sub> hybrid sterility. Previously, we characterized three unlinked epistatic loci, hybrid sterility-a1 (hsa1), hsa2, and hsa3, responsible for the F<sub>2</sub> sterility in a cross between Oryza sativa ssp. indica and japonica. In this study, we identified that the hsa1 locus contains two interacting genes, HSA1a and HSA1b, within a 30-kb region. HSA1a-j (japonica allele) encodes a highly conserved plant-specific domain of unknown function protein (DUF1618), whereasthe indica allele (HSA1a-i<sup>s</sup>) has two deletion mutations that cause disruption of domain structure. The second gene, HSA1b-i<sup>s</sup>, encodes an uncharacterized proteinwith some similarity to a nucleotide-binding protein. Homozygous introgression of indica HSA1a-i<sup>s</sup>-HSA1b-i<sup>s</sup> alleles into japonica showed female gamete abortion at an early mitotic stage. The fact that the recombinant haplotype HSA1a-j-HSA1b-i<sup>s</sup> caused semi-sterility in the heterozygous state with the HSA1a-i<sup>s</sup>-HSA1b-i<sup>s</sup> haplotype suggests that variation in the hsa1 locus is a possible cause of the wide-spectrum sterility barriers seen in F<sub>1</sub> hybrids and successive generations in rice. We propose a simple genetic model to explain how a single causal mechanism can drive both F<sub>1</sub> and F<sub>2</sub> hybrid sterility.