Axon regeneration of central neurons is a complex process that is tightly regulated by multiple extrinsic and intrinsic factors.The expression levels of distinct genes are changed after central neural system(CNS)injur...Axon regeneration of central neurons is a complex process that is tightly regulated by multiple extrinsic and intrinsic factors.The expression levels of distinct genes are changed after central neural system(CNS)injury and affect axon regeneration.A previous study identified dusp2 as an upregulated gene in zebrafish with spinal cord injury.Here,we found that dual specificity phosphatase 2(DUSP2)is a negative regulator of axon regeneration of the Mauthner cell(M-cell).DUSP2 is a phosphatase that mediates the dephosphorylation of JNK.In this study,we knocked out dusp2 by CRISPR/Cas9 and found that M-cell axons of dusp2(-/-)zebrafish had a better regeneration at the early stage after birth(within 8 days after birth),while those of dusp2^(+/-)zebrafish did not.Overexpression of DUSP2 in Tg(Tol 056)zebrafish by single-cell electroporation retarded the regeneration of M-cell axons.Western blotting results showed that DUSP2 knockout slightly increased the levels of phosphorylated JNK.These findings suggest that knocking out DUSP2 promoted the regeneration of zebrafish M-cell axons,possibly through enhancing JNK phosphorylation.展开更多
基金granted by the National Natural Science Foundation of China,No.82071357Ministry of Science and Technology of China,No.2019YFA0405600(both to BH).
文摘Axon regeneration of central neurons is a complex process that is tightly regulated by multiple extrinsic and intrinsic factors.The expression levels of distinct genes are changed after central neural system(CNS)injury and affect axon regeneration.A previous study identified dusp2 as an upregulated gene in zebrafish with spinal cord injury.Here,we found that dual specificity phosphatase 2(DUSP2)is a negative regulator of axon regeneration of the Mauthner cell(M-cell).DUSP2 is a phosphatase that mediates the dephosphorylation of JNK.In this study,we knocked out dusp2 by CRISPR/Cas9 and found that M-cell axons of dusp2(-/-)zebrafish had a better regeneration at the early stage after birth(within 8 days after birth),while those of dusp2^(+/-)zebrafish did not.Overexpression of DUSP2 in Tg(Tol 056)zebrafish by single-cell electroporation retarded the regeneration of M-cell axons.Western blotting results showed that DUSP2 knockout slightly increased the levels of phosphorylated JNK.These findings suggest that knocking out DUSP2 promoted the regeneration of zebrafish M-cell axons,possibly through enhancing JNK phosphorylation.