Rare earth and trace elements are determined for cassiterite from a vein-type orebody , a lens and a sheeted-type orebody in the Dachang Sn-polymetallic ore field ,Guangxi Province .Cassiterite from the vein-type oreb...Rare earth and trace elements are determined for cassiterite from a vein-type orebody , a lens and a sheeted-type orebody in the Dachang Sn-polymetallic ore field ,Guangxi Province .Cassiterite from the vein-type orebody has rare earth and trace dement characteristics similar to that of Dachang biotite granite of Late Yanshan age, showing an inheritable and a genetic relationship. Cassiterites from the kns and sheeted-vein orebody have rare earth and trace element characteristics greatly different from those of the vein-type cassiterite and the granite,showing distinctly higher contents of the ore-forming elements As, Sb,Zn,Ag etc.and a positive Eu anomaly and a negative Ce anomaly.The difference of rare earth and trace element characteristics for cassiterite from two kinds of orebodies reflects the compositional difference of ore-forming solutions. Authors suggest that the kns and sheeted-vein orebody was of nonmagmatic , mixed with underground hot brine origin , and that this kind of hot brine reacted with Devonian and Predevonian older strata and extraced some ore-forming metals from the strata and finaly empbced along the bedding and interbyer fracture zone etc. on its ascending way driven by the Indonisian orogenic movement . The vein-type orebody was formed chiefly by post-magmatic hydrothermal sobtions derived from magma differentiation of the Dachang biotite granite .展开更多
Longtoushan Sn-polymetal deposit is a large-scale deposit of high-tenor. The ore-bodies occur in reef limestone of middle Devonian. There is much anthraxolite in reef limestone and ore-bodies. The anthraxolite is the ...Longtoushan Sn-polymetal deposit is a large-scale deposit of high-tenor. The ore-bodies occur in reef limestone of middle Devonian. There is much anthraxolite in reef limestone and ore-bodies. The anthraxolite is the postmature result of oil-gas' thermal metamorphism. The close relationship of anthraxolite and Sn-polymetal deposit reveals the space-time relation between oil-gas evolution and Sn-polymetal mineralization. Sulfur isotope of Longtoushan deposit is close to oil's sulfur in Devonian, which indicates obvious relationship between the sulfur's source of deposit and oil-gas' activity. The forming of Longtoushan deposit relates to exhalative-sedimentary mineralization in Devonian. Because of the favorable hydrocarbon-forming condition of Longtoushan reef and surrounding basin facies' black shale and peat, coupling of ore-formation and hydrocarbon-forming occurs in seabed's hydrothermal convection. The distributing of ore-forming elements indicates the presence of hydrothermal convection system. The thermal fluid containing organic matters conduces to Sn-polymetal elements' activation and transfer, and provides catalyzing condition to the transforming from SO42- to S2-. The erosion action of brine containing organic acid to reef limestone induces the growing of crannies and karst's caverns, which provides advantageous space to Sn-polymetal mineralization. The heat source of mineralization provides thermocatalysis condition to hydrocarbon-forming. When the circulatory fluid containing oil-gas enters the high-temperature region(>150 ℃ ), the oil-gas is decomposed and anthraxolite comes into being.展开更多
Sn-polymetallic ores at Dachang,Guangxi Autonomous Region,China,are hosted in Middle-Upper Devonian reef limestones,siliceous rocks,banded and lenticular limestones,etc.Two types of orebodies can be distinguished acco...Sn-polymetallic ores at Dachang,Guangxi Autonomous Region,China,are hosted in Middle-Upper Devonian reef limestones,siliceous rocks,banded and lenticular limestones,etc.Two types of orebodies can be distinguished according to their telations to the bedding:one is distributed along the bedding and the.other cuts across the bedding.Sn and sulfide orebodies associated with K-feldspare are mostly characterized by laminated ore structure. Microscopic examinations of K-feldspar-bearing rocks,in conjunction with X-ray diffraction,chemical composiion and cathodoluminescence data for K-feldspars,as well as their telations to mineralization,the authors consider that the K-feldspare are of authigenic origin,subordinate to the epigenetic stage of diagenesis,They resulted from the reaction of mixed,deep-seated,circulating underground hot waters rich in K,Al and Si with argillaceous carbonates during the Indo nesian orogenic movement.It is suggested more attention should be paid to the effect of authigenic K-feldspars on Sn mineralization.In the meantime the event related to circulating underground hot waters should also be taken into account so as to provide new clues to blind ore prospecting.展开更多
For revealing the ore sources of the Dachang tin?polymetallic ore deposit, the lead isotopes were analyzed systematically by using the single minerals of sulphides, including pyrite, pyrrhotite, sphalerite, and galena...For revealing the ore sources of the Dachang tin?polymetallic ore deposit, the lead isotopes were analyzed systematically by using the single minerals of sulphides, including pyrite, pyrrhotite, sphalerite, and galena. Then, the mineral sources and their characteristics were discussed based on the classical lead isotope discriminating model. The results show that the lead isotope ratios of206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb range from 17.478 to 18.638, 15.440 to 15.858, and 37.556 to 39.501, respectively. According to Zartman lead model, the ore lead contains the upper crust composition; however, the granite does not provide all ore leads, and other material sources exist. Obviously, the ore deposit belongs to the result of the combined effect of crust?mantle. The source rocks are characterized by a certain degree of similarity with the island arc material. Moreover, its distant origin in the upper and lower crusts may be related to the subduction island arc material or oceanic crust. The mantle-derived material may have a certain status in the source region. Meanwhile, based on the lead isotope three-dimensional topology projection vectors, the ore leads are concentrated in zoneA, which indicates the characteristics of Yangtze lead isotope province and a possible genetic relationship with Yangtze block.展开更多
Based on the study of the petrology, mineralogy, structural geology and fluid inclusion of the Dafulou ore deposit in the Dachang ore field, the ore deposit geology and ore-forming fluids were analyzed. It shows that ...Based on the study of the petrology, mineralogy, structural geology and fluid inclusion of the Dafulou ore deposit in the Dachang ore field, the ore deposit geology and ore-forming fluids were analyzed. It shows that there are five main hydrothermal alteration types in the Dafulou ore district, namely the silicification, carbonate, sericite, pyrite and pyrrhotite. The mineralization types are composed of the stratiform type, interlayer type and stockwork type. The ore textures present as metasomatic texture, euhedral-subhedral granular texture and solid solution texture. The ore structure consists of massive structure, dissemination structure, fine veined structure, stockwork structure and brecciated structure. Four ore types are recognized, namely the disseminated ore, dense massive ore, veinlet ore and brecciated ore. Six types of fluid inclusions are determined, i.e. the single-phase gaseous fluid inclusions, single-phase salt solution fluid inclusions, two-phase vapour-rich fluid inclusions, two-phase liquid-rich fluid inclusions, three-phase CO2-rich fluid inclusions and solid(s)-bearing fluid inclusions, all of which form in three dominant temperature scopes, 120-150, 230-270, 350-460 °C. But, the majority of them form in the high temperature environment (350-460 °C). The tectonism plays an important role in the mineralization, which usually controls the scale, occurrence and shape of the Sn orebody. There are four types of hydrothermal fluid systems, H2O-NaCl-CaCl2, H2O-CaCl2, H2O-NaCl-MgCl2 and H2O-MgCl2. Similar to the other ore deposits in the Dachang ore field, there also exists the multiple source of ore-forming fluids. Overall, the Dafulou ore deposit should be the result of the crust-mantle interaction.展开更多
The geological investigation of the Dachang ore field was carried out in detail, and the geological characteristics of the deposits, consisting of the Tongkeng and Dafulou deposits, were observed and researched system...The geological investigation of the Dachang ore field was carried out in detail, and the geological characteristics of the deposits, consisting of the Tongkeng and Dafulou deposits, were observed and researched systematically. It suggests that the mineralization types of Changpo ore are composed of cracking vein, thin vein, bedded vein and thin vein-net vein disseminated types. The cracking vein ore is usually lens-shaped in the vertical direction. The thin vein ore is always characterized by a stable trend and tendency. The bedded ore always occurs along the strata in the way of filling and metasomatism in the fracture system. In terms of Bali-longtoushan ore, it is characterized by complicated mineral components and a variety of minerals. More generally, ore textures consist of the anhedral-subhedral shapes and thin particle, and secondary with the interstitial texture, solid solution separation texture, dissolution texture, corona texture, and crushing texture, yet ore structures include the massive, veinlet, disseminated, banded, miarolitic, biological residual and brecciated structure. In addition, the sulfur isotopes of the metal sulfide were analyzed. The results show that the δ34S values of Tongkeng ore range from-0.30% to 1.38% with more dispersed characteristics, yet in terms of Dafulou ore, the δ34S values are from-0.15% to 0.22% which are characterized by more focused. This indicates that the sulfur isotope composition has large difference between the different deposits. The sulfur isotope values of the Dafulou ore are concentrated relatively, yet are dispersed for the Tongkeng ore. Likewise, there are also divergences of sulfur isotopes for the different minerals. The sulfur isotope values of pyrrhotine are dispersed, yet are homogeneous for pyrite. In short, the divergence of the sulfur isotope is reflected in both the different deposits and minerals, all of these may account for the difference of sulfur sources.展开更多
The Dachang superlarge Sn-polymetal deposit in Guangxi, China, is one of the largest tin deposit all over the world. However, this deposit has long been in debate as to its origin. One of the opinions is that the Dach...The Dachang superlarge Sn-polymetal deposit in Guangxi, China, is one of the largest tin deposit all over the world. However, this deposit has long been in debate as to its origin. One of the opinions is that the Dachang deposit was formed by replacement of hydrothermal solution originating from Yanshanian granites, and the other is that this deposit was formed by submarine exhalation in the Devonian. This paper presents some new isotopic geochronology data obtained with the 40Ar-39Ar method for quartz and sanidine from massive ore in the No. 91 and No. 100 orebodies. Analytic results show that the No. 91 orebody was formed at 94.52±0.33 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz) or 91.4±2.9 Ma (the plateau age obtained with the 40Ar-39Ar method for feldspar), while the No. 100 orebody was formed at 94.56±0.45 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz), suggesting that both the No. 91 and the No. 100 orebodies were formed at the Late Yanshanian instead of the Devonian. The No. 100 orebody might be formed by filling of ore materials into caves in Devonian reef limestone. Because the ore-bearing solution released its pressure and lowered its temperature suddenly in a cave environment, ore minerals were formed concentratedly while water and other materials such as CO2 evaporated quickly, resulting less alteration of host rocks.展开更多
The Dachang tin-polymetallic district, Guangxi,China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sed...The Dachang tin-polymetallic district, Guangxi,China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sediments adjacent to the underlying Cretaceous Longxianggai granite(91–97 Ma). The Lamo Zn–Cu deposit is a typical skarn deposit in the district and occurs at the contact zone between the Upper Devonian limestone and the granite.The ore minerals mainly consist of sphalerite, arsenopyrite,pyrrhotite, galena, chalcopyrite, and minor molybdenite.However, the age of mineralization and source of the metals are not well constrained. In this study, we use the molybdenite Re–Os dating method and in-situ Pb isotopes of sulfides from the Lamo deposit for the first time in order to directly determine the age of mineralization and the tracing source of metals. Six molybdenite samples yielded a more accurate Re–Os isochron age of 90.0 ± 1.1 Ma(MSWD = 0.72), which is much younger than the reported garnet Sm–Nd isochron age of 95 ± 11 Ma and quartz fluid inclusions Rb–Sr isochron age of 99 ± 6 Ma. This age is also interpreted as the age of Zn–Cu skarn mineralization in the Dachang district. Further, in this study we found that in-situ Pb isotopes of sulfides from the Lamo deposit and feldspars in the district's biotite granite and granitic porphyry dikes have a narrow range and an overlap of Pb isotopic compositions(^(206) Pb/^(204) Pb =18.417–18.594,^(207) Pb/^(204) Pb = 15.641–15.746, and^(208) Pb/^(204) Pb = 38.791–39.073), suggesting that the metals were mainly sourced from Cretaceous granitic magma.展开更多
Recently discovered intermediate-basic volcanic rocks in the Devonian strata at Dachang, Guangxi Zhuang Autonomous Region are dominated by basalts and andesites. Most of them belong to the calc-alkali and alkali serie...Recently discovered intermediate-basic volcanic rocks in the Devonian strata at Dachang, Guangxi Zhuang Autonomous Region are dominated by basalts and andesites. Most of them belong to the calc-alkali and alkali series. Petrology and geochemistry data indicate that the volcanic rocks may be formed in a continental rift environment. The volcanic rocks are in conformable contact with the overlying and underlying wall rocks, with such typical sedimentary structures as laminated and striped ones, and the host rocks of the volcanic rocks contain lots of marine fossils such as tentaculite. Many pieces of evidence indicate that the eruption environment of the volcanic rocks is a sea-facies one. The volcanic rocks are of the LREE-enrichment type, with high ratios of light rare-earth elements to heavy rare-earth elements. In addition, they display moderately negative δEu anomalies and moderately negative δCe anomalies with a higher degree of LREE and HREE fractionation. Through the Q-cluster analysis of the REE samples, it is indicated that the ores have a closer relation with the layered volcanic rocks, and also possess a certain inheritance-consistency relationship with the layered volcanic rocks. The source of ore-forming materials may be related with volcanism. It is proposed that the ore deposit in the study area should be genetically explained as the result of marine volcano-sedimentary exhalation of hot water and late superposition-reworking.展开更多
From the petrological study of ore-hosting focks which contain large anorthits crystals and the occurrence and chemical composition of anorthites and related minerals,the authors consider that the large anorthite crys...From the petrological study of ore-hosting focks which contain large anorthits crystals and the occurrence and chemical composition of anorthites and related minerals,the authors consider that the large anorthite crystals are of authigenic origin. The distribution characteristics of anorthites,i.e.,they are distributed along the bedding and structurally weak zones but not restricted to synsedimentary slump structures,and the relationship for some elements between anorthites and other minerals indicate that anorthites have resulted from reaction of circulating alkaline solutions rich in Al and Si with carbonated during the Indosinian orogeny.The results of this work suggest that the association of authigenic anorthites with bedded orebodies in the Dachang ore field may be the evidence that the mineralization is related to circulating underground hot waters.展开更多
Based on X-ray diffraction,optical microscopy and scanning electron microscopy analysis of the Dachang gold ore,it is showed that the sulfide of ore is the main carrier minerals of gold. A majority of gold is embedded...Based on X-ray diffraction,optical microscopy and scanning electron microscopy analysis of the Dachang gold ore,it is showed that the sulfide of ore is the main carrier minerals of gold. A majority of gold is embedded in pyrite and tetrahedrite as the form of inclusion and a small amount intergrowth with pyrite and gangue mineral,occasionally the presence is in form of monomer natural gold. The main factors which influence the recovery rate are sulfide mineral particle size,and the fine grained sulfide is beneficial for the dissociation and flotation of gold bearing minerals. The monomer dissociation degree of gold bearing minerals can reach91. 3%,when the grinding fineness is less than 0. 074 mm and grain level accounts as 80%. It is not conducive to the flotation of sulfide if the grinding fineness is low or high. It is difficult to completely dissociate the monomer if there is a small amount of pyrite and arsenopyrite in the ore. Therefore,before leaching the gold,it must conduct pretreatment to reach the ideal recovery rate of the gold,like roasting oxidation,pressure oxidation and biological oxidation. The fine microscopic gold has little influence on the gold recovery rate.展开更多
The ore genesis model for the Dachang Sn-polymetallic ore deposit has long been in dispute, and the major debate focuses on whether the stratiform and massive orebodies formed during the Yanshanian magmatic-hydro-ther...The ore genesis model for the Dachang Sn-polymetallic ore deposit has long been in dispute, and the major debate focuses on whether the stratiform and massive orebodies formed during the Yanshanian magmatic-hydro-thermal event or they were products of Devonian syn-sedi-mentary exhalative-hydrothermal event. This note presents new helium isotope data from fluid inclusions of four pyrites and one fluorite. The pyrites were collected from the stratiform and massive orebodies in the deposit, and their 3He/4He ratios are significantly higher than 1, ranging from 1.7 to 2.5 Ra, which indicates a mantle component in the responsible hydrothermal fluids. It is suggested that the ore-forming fluids were a mixture of deep circulating seawater and a mantle-derived fluid, which are similar to many of those modern submarine hydrothermal fluids. In contrast, the fluorite, collected from a granite-related hydrothermal vein in the deposit, shows a low 3He/4He ratio of 0.7 Ra, which indicates no mantle component展开更多
To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology,mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the ...To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology,mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the structure of pyrite is mainlycomposed of massive structure, disseminated structure, vein structure, reticular structure, comb structure and so on. Generally, thepyrite coexists with sphalerite, marmatite, pyrrhotite, chalcopyrite, galena, and arsenopyrite. And the texture of pyrite primarilyconsists of the metasomatic texture, solid solution texture, idiomorphic?hypidiomorphic granular texture, and disseminated texture.The content of indium in pyrite ranges from 0.491×10?6 to 65.1×10?6 with an average value of 14.38×10?6. Yet, the indium content inthe Gaofeng deposit is higher than that in the Dafulou and Tongkeng deposit, showing a particularly significant supernormalenrichment. Besides, the cadmium content in pyrite is also higher than other dispersed elements, and similarly the abnormalenrichment of cadmium in the Gaofeng deposit is also very significant. An obvious positive correlation exists between In and Cd, orTl, but a negative correlation between In and Re. It is difficult to find out a positive or negative correlation between In and Ga. Theelement zinc is of great importance to the enrichment of indium, which can possibly facilitate to the migration and crystallization of dispersed element indium.展开更多
The Lianhuashan metallogenic belt in Eastern Guangdong Province(South China)is the most important Sn polymetallic district in the region,hosting many medium-sized deposits such as the Tashan,Xianshuili,and Jiangxikeng...The Lianhuashan metallogenic belt in Eastern Guangdong Province(South China)is the most important Sn polymetallic district in the region,hosting many medium-sized deposits such as the Tashan,Xianshuili,and Jiangxikeng.However,the metallogenic mechanism of these deposits remains hotly debated.In this paper,two types of cassiterites(Cst1 and Cst2)have been identified in the Xianshuili and Jiangxikeng Sn deposits,which are hosted in the biotite-mylonite and garnetcordierite-muscovite blastomylonite,respectively.The euhedral Cst1(0.50–1.8 mm)coexists with biotite,feldspar,and quartz.It is platy and zoned with a mosaic structure.The subhedral to anhedral Cst2(0.02–0.35 mm)coexists with metamorphic minerals such as garnet and cordierite,and it is characterized by well-developed porosity and has no zonation.In-situ U-Pb dating of the Cst1 and Cst2 yielded ages of 149.5±1.0 Ma(MSWD=1.6,n=45)and 125.1±2.3 Ma(MSWD=4.5,n=43),respectively.Cst1 is most likely to be related to the intermediate-felsic magmatism that formed Gaojiping Group,whereas Cst2 has relatively high Ta,Nb,Fe,and W contents with obvious rare earth tetragroup effect,and may have formed by the late Early Cretaceous dynamic metamorphism.Results presented here,when combined with regional geology and geochemistry,led us to suggest that the Mesozoic intermediate-felsic volcanic rocks in the LMB are significantly enriched in Sn and F,with high Sn-polymetallic mineralization potential which likely have contributed to the volcanic-related Cst1.In the late Early Cretaceous period,due to the NW-dipping subduction of the paleo-Pacific plate,the intermediate-felsic volcanic rocks underwent dynamic metamorphism that led to Sn mobilization,migration,and precipitation in the regional ductile shear zones,and eventually generating Sn mineralization.We propose that areas beneath Xianshuili and Jiangxikeng have great potential for discovery of new Sn resources.Our findings likely offer practical importance to regional geological ore prospecting.展开更多
基金The project is supported by Professional Foundation of Geology Carl Duesberg Gesellschaft
文摘Rare earth and trace elements are determined for cassiterite from a vein-type orebody , a lens and a sheeted-type orebody in the Dachang Sn-polymetallic ore field ,Guangxi Province .Cassiterite from the vein-type orebody has rare earth and trace dement characteristics similar to that of Dachang biotite granite of Late Yanshan age, showing an inheritable and a genetic relationship. Cassiterites from the kns and sheeted-vein orebody have rare earth and trace element characteristics greatly different from those of the vein-type cassiterite and the granite,showing distinctly higher contents of the ore-forming elements As, Sb,Zn,Ag etc.and a positive Eu anomaly and a negative Ce anomaly.The difference of rare earth and trace element characteristics for cassiterite from two kinds of orebodies reflects the compositional difference of ore-forming solutions. Authors suggest that the kns and sheeted-vein orebody was of nonmagmatic , mixed with underground hot brine origin , and that this kind of hot brine reacted with Devonian and Predevonian older strata and extraced some ore-forming metals from the strata and finaly empbced along the bedding and interbyer fracture zone etc. on its ascending way driven by the Indonisian orogenic movement . The vein-type orebody was formed chiefly by post-magmatic hydrothermal sobtions derived from magma differentiation of the Dachang biotite granite .
文摘Longtoushan Sn-polymetal deposit is a large-scale deposit of high-tenor. The ore-bodies occur in reef limestone of middle Devonian. There is much anthraxolite in reef limestone and ore-bodies. The anthraxolite is the postmature result of oil-gas' thermal metamorphism. The close relationship of anthraxolite and Sn-polymetal deposit reveals the space-time relation between oil-gas evolution and Sn-polymetal mineralization. Sulfur isotope of Longtoushan deposit is close to oil's sulfur in Devonian, which indicates obvious relationship between the sulfur's source of deposit and oil-gas' activity. The forming of Longtoushan deposit relates to exhalative-sedimentary mineralization in Devonian. Because of the favorable hydrocarbon-forming condition of Longtoushan reef and surrounding basin facies' black shale and peat, coupling of ore-formation and hydrocarbon-forming occurs in seabed's hydrothermal convection. The distributing of ore-forming elements indicates the presence of hydrothermal convection system. The thermal fluid containing organic matters conduces to Sn-polymetal elements' activation and transfer, and provides catalyzing condition to the transforming from SO42- to S2-. The erosion action of brine containing organic acid to reef limestone induces the growing of crannies and karst's caverns, which provides advantageous space to Sn-polymetal mineralization. The heat source of mineralization provides thermocatalysis condition to hydrocarbon-forming. When the circulatory fluid containing oil-gas enters the high-temperature region(>150 ℃ ), the oil-gas is decomposed and anthraxolite comes into being.
文摘Sn-polymetallic ores at Dachang,Guangxi Autonomous Region,China,are hosted in Middle-Upper Devonian reef limestones,siliceous rocks,banded and lenticular limestones,etc.Two types of orebodies can be distinguished according to their telations to the bedding:one is distributed along the bedding and the.other cuts across the bedding.Sn and sulfide orebodies associated with K-feldspare are mostly characterized by laminated ore structure. Microscopic examinations of K-feldspar-bearing rocks,in conjunction with X-ray diffraction,chemical composiion and cathodoluminescence data for K-feldspars,as well as their telations to mineralization,the authors consider that the K-feldspare are of authigenic origin,subordinate to the epigenetic stage of diagenesis,They resulted from the reaction of mixed,deep-seated,circulating underground hot waters rich in K,Al and Si with argillaceous carbonates during the Indo nesian orogenic movement.It is suggested more attention should be paid to the effect of authigenic K-feldspars on Sn mineralization.In the meantime the event related to circulating underground hot waters should also be taken into account so as to provide new clues to blind ore prospecting.
基金Project(41202051)supported by the National Natural Science Foundation of ChinaProject(S2014GK3005)supported by Hunan Industrial Science and Technology Support Program+1 种基金Project(2012M521721)supported by China Postdoctoral Science FoundationProject(CSUZC2013021)supported by the Open-end Fund for the Valuable and Precision Instruments of Central South University,China
文摘For revealing the ore sources of the Dachang tin?polymetallic ore deposit, the lead isotopes were analyzed systematically by using the single minerals of sulphides, including pyrite, pyrrhotite, sphalerite, and galena. Then, the mineral sources and their characteristics were discussed based on the classical lead isotope discriminating model. The results show that the lead isotope ratios of206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb range from 17.478 to 18.638, 15.440 to 15.858, and 37.556 to 39.501, respectively. According to Zartman lead model, the ore lead contains the upper crust composition; however, the granite does not provide all ore leads, and other material sources exist. Obviously, the ore deposit belongs to the result of the combined effect of crust?mantle. The source rocks are characterized by a certain degree of similarity with the island arc material. Moreover, its distant origin in the upper and lower crusts may be related to the subduction island arc material or oceanic crust. The mantle-derived material may have a certain status in the source region. Meanwhile, based on the lead isotope three-dimensional topology projection vectors, the ore leads are concentrated in zoneA, which indicates the characteristics of Yangtze lead isotope province and a possible genetic relationship with Yangtze block.
基金Project(41202051)supported by the National Natural Science Foundation of ChinaProject(2012M521721)supported by China Postdoctoral Science FoundationProject(CSUZC2013021)supported by Valuable Equipment Open Sharing Fund of Central South University,China
文摘Based on the study of the petrology, mineralogy, structural geology and fluid inclusion of the Dafulou ore deposit in the Dachang ore field, the ore deposit geology and ore-forming fluids were analyzed. It shows that there are five main hydrothermal alteration types in the Dafulou ore district, namely the silicification, carbonate, sericite, pyrite and pyrrhotite. The mineralization types are composed of the stratiform type, interlayer type and stockwork type. The ore textures present as metasomatic texture, euhedral-subhedral granular texture and solid solution texture. The ore structure consists of massive structure, dissemination structure, fine veined structure, stockwork structure and brecciated structure. Four ore types are recognized, namely the disseminated ore, dense massive ore, veinlet ore and brecciated ore. Six types of fluid inclusions are determined, i.e. the single-phase gaseous fluid inclusions, single-phase salt solution fluid inclusions, two-phase vapour-rich fluid inclusions, two-phase liquid-rich fluid inclusions, three-phase CO2-rich fluid inclusions and solid(s)-bearing fluid inclusions, all of which form in three dominant temperature scopes, 120-150, 230-270, 350-460 °C. But, the majority of them form in the high temperature environment (350-460 °C). The tectonism plays an important role in the mineralization, which usually controls the scale, occurrence and shape of the Sn orebody. There are four types of hydrothermal fluid systems, H2O-NaCl-CaCl2, H2O-CaCl2, H2O-NaCl-MgCl2 and H2O-MgCl2. Similar to the other ore deposits in the Dachang ore field, there also exists the multiple source of ore-forming fluids. Overall, the Dafulou ore deposit should be the result of the crust-mantle interaction.
基金Project(41202051)supported by the National Natural Science Foundation of ChinaProject(2012M521721)supported by China Postdoctoral Science FoundationProject(CSUZC2013021)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘The geological investigation of the Dachang ore field was carried out in detail, and the geological characteristics of the deposits, consisting of the Tongkeng and Dafulou deposits, were observed and researched systematically. It suggests that the mineralization types of Changpo ore are composed of cracking vein, thin vein, bedded vein and thin vein-net vein disseminated types. The cracking vein ore is usually lens-shaped in the vertical direction. The thin vein ore is always characterized by a stable trend and tendency. The bedded ore always occurs along the strata in the way of filling and metasomatism in the fracture system. In terms of Bali-longtoushan ore, it is characterized by complicated mineral components and a variety of minerals. More generally, ore textures consist of the anhedral-subhedral shapes and thin particle, and secondary with the interstitial texture, solid solution separation texture, dissolution texture, corona texture, and crushing texture, yet ore structures include the massive, veinlet, disseminated, banded, miarolitic, biological residual and brecciated structure. In addition, the sulfur isotopes of the metal sulfide were analyzed. The results show that the δ34S values of Tongkeng ore range from-0.30% to 1.38% with more dispersed characteristics, yet in terms of Dafulou ore, the δ34S values are from-0.15% to 0.22% which are characterized by more focused. This indicates that the sulfur isotope composition has large difference between the different deposits. The sulfur isotope values of the Dafulou ore are concentrated relatively, yet are dispersed for the Tongkeng ore. Likewise, there are also divergences of sulfur isotopes for the different minerals. The sulfur isotope values of pyrrhotine are dispersed, yet are homogeneous for pyrite. In short, the divergence of the sulfur isotope is reflected in both the different deposits and minerals, all of these may account for the difference of sulfur sources.
基金the State Key BasicResearch Program ofChina(TG1999043203 ,TG1999043201) the Geological Survey Program(K1.4-3-4)under the Ministry of Land and Resources.
文摘The Dachang superlarge Sn-polymetal deposit in Guangxi, China, is one of the largest tin deposit all over the world. However, this deposit has long been in debate as to its origin. One of the opinions is that the Dachang deposit was formed by replacement of hydrothermal solution originating from Yanshanian granites, and the other is that this deposit was formed by submarine exhalation in the Devonian. This paper presents some new isotopic geochronology data obtained with the 40Ar-39Ar method for quartz and sanidine from massive ore in the No. 91 and No. 100 orebodies. Analytic results show that the No. 91 orebody was formed at 94.52±0.33 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz) or 91.4±2.9 Ma (the plateau age obtained with the 40Ar-39Ar method for feldspar), while the No. 100 orebody was formed at 94.56±0.45 Ma (the plateau age obtained with the 40Ar-39Ar method for quartz), suggesting that both the No. 91 and the No. 100 orebodies were formed at the Late Yanshanian instead of the Devonian. The No. 100 orebody might be formed by filling of ore materials into caves in Devonian reef limestone. Because the ore-bearing solution released its pressure and lowered its temperature suddenly in a cave environment, ore minerals were formed concentratedly while water and other materials such as CO2 evaporated quickly, resulting less alteration of host rocks.
基金supported by the National Science Foundation of China(Grants Nos.41672080,41772079,41272113)Outstanding Talent Foundation of the Institute of Geochemistry,Chinese Academy of Sciences
文摘The Dachang tin-polymetallic district, Guangxi,China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sediments adjacent to the underlying Cretaceous Longxianggai granite(91–97 Ma). The Lamo Zn–Cu deposit is a typical skarn deposit in the district and occurs at the contact zone between the Upper Devonian limestone and the granite.The ore minerals mainly consist of sphalerite, arsenopyrite,pyrrhotite, galena, chalcopyrite, and minor molybdenite.However, the age of mineralization and source of the metals are not well constrained. In this study, we use the molybdenite Re–Os dating method and in-situ Pb isotopes of sulfides from the Lamo deposit for the first time in order to directly determine the age of mineralization and the tracing source of metals. Six molybdenite samples yielded a more accurate Re–Os isochron age of 90.0 ± 1.1 Ma(MSWD = 0.72), which is much younger than the reported garnet Sm–Nd isochron age of 95 ± 11 Ma and quartz fluid inclusions Rb–Sr isochron age of 99 ± 6 Ma. This age is also interpreted as the age of Zn–Cu skarn mineralization in the Dachang district. Further, in this study we found that in-situ Pb isotopes of sulfides from the Lamo deposit and feldspars in the district's biotite granite and granitic porphyry dikes have a narrow range and an overlap of Pb isotopic compositions(^(206) Pb/^(204) Pb =18.417–18.594,^(207) Pb/^(204) Pb = 15.641–15.746, and^(208) Pb/^(204) Pb = 38.791–39.073), suggesting that the metals were mainly sourced from Cretaceous granitic magma.
基金financially supported by the Applied Basic Research Projects(General Program)of Yunnan Province(2011FB015)
文摘Recently discovered intermediate-basic volcanic rocks in the Devonian strata at Dachang, Guangxi Zhuang Autonomous Region are dominated by basalts and andesites. Most of them belong to the calc-alkali and alkali series. Petrology and geochemistry data indicate that the volcanic rocks may be formed in a continental rift environment. The volcanic rocks are in conformable contact with the overlying and underlying wall rocks, with such typical sedimentary structures as laminated and striped ones, and the host rocks of the volcanic rocks contain lots of marine fossils such as tentaculite. Many pieces of evidence indicate that the eruption environment of the volcanic rocks is a sea-facies one. The volcanic rocks are of the LREE-enrichment type, with high ratios of light rare-earth elements to heavy rare-earth elements. In addition, they display moderately negative δEu anomalies and moderately negative δCe anomalies with a higher degree of LREE and HREE fractionation. Through the Q-cluster analysis of the REE samples, it is indicated that the ores have a closer relation with the layered volcanic rocks, and also possess a certain inheritance-consistency relationship with the layered volcanic rocks. The source of ore-forming materials may be related with volcanism. It is proposed that the ore deposit in the study area should be genetically explained as the result of marine volcano-sedimentary exhalation of hot water and late superposition-reworking.
文摘From the petrological study of ore-hosting focks which contain large anorthits crystals and the occurrence and chemical composition of anorthites and related minerals,the authors consider that the large anorthite crystals are of authigenic origin. The distribution characteristics of anorthites,i.e.,they are distributed along the bedding and structurally weak zones but not restricted to synsedimentary slump structures,and the relationship for some elements between anorthites and other minerals indicate that anorthites have resulted from reaction of circulating alkaline solutions rich in Al and Si with carbonated during the Indosinian orogeny.The results of this work suggest that the association of authigenic anorthites with bedded orebodies in the Dachang ore field may be the evidence that the mineralization is related to circulating underground hot waters.
文摘Based on X-ray diffraction,optical microscopy and scanning electron microscopy analysis of the Dachang gold ore,it is showed that the sulfide of ore is the main carrier minerals of gold. A majority of gold is embedded in pyrite and tetrahedrite as the form of inclusion and a small amount intergrowth with pyrite and gangue mineral,occasionally the presence is in form of monomer natural gold. The main factors which influence the recovery rate are sulfide mineral particle size,and the fine grained sulfide is beneficial for the dissociation and flotation of gold bearing minerals. The monomer dissociation degree of gold bearing minerals can reach91. 3%,when the grinding fineness is less than 0. 074 mm and grain level accounts as 80%. It is not conducive to the flotation of sulfide if the grinding fineness is low or high. It is difficult to completely dissociate the monomer if there is a small amount of pyrite and arsenopyrite in the ore. Therefore,before leaching the gold,it must conduct pretreatment to reach the ideal recovery rate of the gold,like roasting oxidation,pressure oxidation and biological oxidation. The fine microscopic gold has little influence on the gold recovery rate.
基金This work was jointly supported by the National Science Foundation Project for the Outstanding Youth Scientists (Grant No. 49925306)the State Key Basic Research Program of China (Grant No. G1999043211).
文摘The ore genesis model for the Dachang Sn-polymetallic ore deposit has long been in dispute, and the major debate focuses on whether the stratiform and massive orebodies formed during the Yanshanian magmatic-hydro-thermal event or they were products of Devonian syn-sedi-mentary exhalative-hydrothermal event. This note presents new helium isotope data from fluid inclusions of four pyrites and one fluorite. The pyrites were collected from the stratiform and massive orebodies in the deposit, and their 3He/4He ratios are significantly higher than 1, ranging from 1.7 to 2.5 Ra, which indicates a mantle component in the responsible hydrothermal fluids. It is suggested that the ore-forming fluids were a mixture of deep circulating seawater and a mantle-derived fluid, which are similar to many of those modern submarine hydrothermal fluids. In contrast, the fluorite, collected from a granite-related hydrothermal vein in the deposit, shows a low 3He/4He ratio of 0.7 Ra, which indicates no mantle component
基金Projects(41202051,41672076)supported by the National Natural Science Foundation of ChinaProject(2015CX008)supported by the Innovation-driven Plan in Central South University,China+4 种基金Project(2016JJ1022)supported by Hunan Provincial Natural Science Outstanding Youth Foundation of ChinaProject(CSUZC201601)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,ChinaProject(2014T70886)supported by the Special Program of the Postdoctoral Science Foundation of ChinaProject(2012M521721)supported by China Postdoctoral Science FoundationProject(XKRZ[2014]76)supported by the Platform of Scientific and Technological Innovation for Hunan Youth,China
文摘To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology,mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the structure of pyrite is mainlycomposed of massive structure, disseminated structure, vein structure, reticular structure, comb structure and so on. Generally, thepyrite coexists with sphalerite, marmatite, pyrrhotite, chalcopyrite, galena, and arsenopyrite. And the texture of pyrite primarilyconsists of the metasomatic texture, solid solution texture, idiomorphic?hypidiomorphic granular texture, and disseminated texture.The content of indium in pyrite ranges from 0.491×10?6 to 65.1×10?6 with an average value of 14.38×10?6. Yet, the indium content inthe Gaofeng deposit is higher than that in the Dafulou and Tongkeng deposit, showing a particularly significant supernormalenrichment. Besides, the cadmium content in pyrite is also higher than other dispersed elements, and similarly the abnormalenrichment of cadmium in the Gaofeng deposit is also very significant. An obvious positive correlation exists between In and Cd, orTl, but a negative correlation between In and Re. It is difficult to find out a positive or negative correlation between In and Ga. Theelement zinc is of great importance to the enrichment of indium, which can possibly facilitate to the migration and crystallization of dispersed element indium.
基金supported by the Cooperative Research Fund of the CAS Key Laboratory of Mineralogy and Metallogeny(Grant No.KLMM20200201)the National Natural Science Foundation of China(Grant No.41903016)+2 种基金the President Youth Foundation from Guangzhou Institute of Geochemistry,Chinese Academy of Sciences(Grant No.2019SZJJ-08)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2019B030302013)the Mineral Geological Survey and Prospecting Prediction in Comprehensive Exploration Area of the China Geological Survey(Grant No.12120114015901)。
文摘The Lianhuashan metallogenic belt in Eastern Guangdong Province(South China)is the most important Sn polymetallic district in the region,hosting many medium-sized deposits such as the Tashan,Xianshuili,and Jiangxikeng.However,the metallogenic mechanism of these deposits remains hotly debated.In this paper,two types of cassiterites(Cst1 and Cst2)have been identified in the Xianshuili and Jiangxikeng Sn deposits,which are hosted in the biotite-mylonite and garnetcordierite-muscovite blastomylonite,respectively.The euhedral Cst1(0.50–1.8 mm)coexists with biotite,feldspar,and quartz.It is platy and zoned with a mosaic structure.The subhedral to anhedral Cst2(0.02–0.35 mm)coexists with metamorphic minerals such as garnet and cordierite,and it is characterized by well-developed porosity and has no zonation.In-situ U-Pb dating of the Cst1 and Cst2 yielded ages of 149.5±1.0 Ma(MSWD=1.6,n=45)and 125.1±2.3 Ma(MSWD=4.5,n=43),respectively.Cst1 is most likely to be related to the intermediate-felsic magmatism that formed Gaojiping Group,whereas Cst2 has relatively high Ta,Nb,Fe,and W contents with obvious rare earth tetragroup effect,and may have formed by the late Early Cretaceous dynamic metamorphism.Results presented here,when combined with regional geology and geochemistry,led us to suggest that the Mesozoic intermediate-felsic volcanic rocks in the LMB are significantly enriched in Sn and F,with high Sn-polymetallic mineralization potential which likely have contributed to the volcanic-related Cst1.In the late Early Cretaceous period,due to the NW-dipping subduction of the paleo-Pacific plate,the intermediate-felsic volcanic rocks underwent dynamic metamorphism that led to Sn mobilization,migration,and precipitation in the regional ductile shear zones,and eventually generating Sn mineralization.We propose that areas beneath Xianshuili and Jiangxikeng have great potential for discovery of new Sn resources.Our findings likely offer practical importance to regional geological ore prospecting.