Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a ...Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a typical example of these problems. The basis of SPH was reviewed, including some techniques for governing equation resolution, such as the stepping method and the boundary handling method. Then numerical results of a dam breaking simulation were discussed, and the benefits of concepts like artificial viscosity and position correction were analyzed in detail. When compared with dam breaking simulated by the volume of fluid (VOF) method, the wave profile generated by SPH had good agreement, but the pressure had only reasonable agreement. Improving pressure results is clearly an important next step for research.展开更多
The precision modeling of dam break floods can lead to formulation of proper emergency action plan to minimize flood impacts within the economic lifetime of the assets.Application of GIS techniques in integration with...The precision modeling of dam break floods can lead to formulation of proper emergency action plan to minimize flood impacts within the economic lifetime of the assets.Application of GIS techniques in integration with hydrological modeling for mapping of the flood inundated areas can play a momentous role in further minimizing the risk and likely damages.In the present study,dam break analysis using DAMBRK model was performed under various likely scenarios.Probable Maximum Flood (PMF)calculated for a return period of 1000 years using deterministic approach was adopted for dam break analysis of the proposed dam under various combinations of breach dimensions.The available downstream river cross-sections data sets were used as input in the model to generate the downstream flood profile.Dam break flow depths generated by the DAMBRK model under various combinations of structural failure are subsequently plotted on Digital Elevation Model(DEM)of the downstream of dam site to map the likely affected area.The simulation results reveals that in one particular case the flood without dam may be more intense if a rainfall of significant intensity takes place.展开更多
Numerical simulation of dam-break wave, as an imitation of tsunami hydraulic bore, with a hump of different slopes is performed in this paper using an in-house code, named a Constrained Interpolation Profile (CIP)-b...Numerical simulation of dam-break wave, as an imitation of tsunami hydraulic bore, with a hump of different slopes is performed in this paper using an in-house code, named a Constrained Interpolation Profile (CIP)-based model. The model is built on a Cartesian grid system with the Navier Stokes equations using a CIP method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of solid body boundary. A more accurate interface capturing scheme, the Tangent of hyperbola for interface capturing/Slope weighting (THINC/SW) scheme, is adopted as the interface capturing method. Then, the CIP-based model is applied to simulate the dam break flow problem in a bumpy channel. Considerable attention is paid to the spilling type reflected bore, the following spilling type wave breaking, free surface profiles and water level variations over time. Computations are compared with available experimental data and other numerical results quantitatively and qualitatively. Further investigation is conducted to analyze the influence of variable slopes on the flow features of the tsunami-like bore.展开更多
Dam breaks are easily triggered by heavy rains due to extreme weather such as typhoons,causing serious economic losses and casualties.Through the investigation of Chaoshan coastal zone,it is found that there have been...Dam breaks are easily triggered by heavy rains due to extreme weather such as typhoons,causing serious economic losses and casualties.Through the investigation of Chaoshan coastal zone,it is found that there have been dam breaks caused by geological disasters.In the design and management of water conservancy project,it is very important to analyze the effect of disastrous flow caused by dam break on the building.In this paper,the effect of the dam break flow on the cylinder is simulated numerically by taking the water body with initial velocity as the dam break flow,and the flow characteristics around the cylinder and the water body are analyzed.Numerical model adopted the Renault Average Navier-Stokes(RANS)model and volume of fluid(VOF)method to analyze the evolution of free water surface.It is found that there are different patterns of water movement in the process of dam break resulting in the creation of several isolated convex hull forms of dam-break waves on the stationary water surface,which causes longer disturbances in the water near the cylinder and makes the cylinder more vulnerable to fatigue damage.The increase of the height of the dam breaking water will lead to the increase of the hydrodynamic force on the pipeline.This study has guiding significance for the study of dam break and dam body design in water conservancy projects.展开更多
An experiment that investigates the interactions between dam-break flow and a floating box is reported in this paper.The interaction processes are described in detail,and the effects of reservoir depth,clearance betwe...An experiment that investigates the interactions between dam-break flow and a floating box is reported in this paper.The interaction processes are described in detail,and the effects of reservoir depth,clearance between the structure and vertical wall,and structure motion on the observed interactions are discussed.Results indicate that interactions are mild if the reservoir depth is relatively small and most of the water flows through under the structure.However,as the reservoir depth increases,the interactions intensify,and overtopping and wave splashing occur.The incident wave is divided into two parts by the structure:1)a jet generated by wave impact and 2)the water flowing through under the structure.The water flowing through under the structure is the main factor influencing the motion of the structure.The phenomenon of secondary slamming is observed in all of the test cases,and the relative motion of the structure and free surface explains the occurrence of secondary slamming.展开更多
This paper aims to numerically investigate the impact of the combination of groynes and vertical piers on mitigating the amplitude and celerity of dam break wave-front.First,a robust numerical model based on the Finit...This paper aims to numerically investigate the impact of the combination of groynes and vertical piers on mitigating the amplitude and celerity of dam break wave-front.First,a robust numerical model based on the Finite Volume Method(FVM)with the Harten,Lax and van Leer(HLL)approximate Reimann’s solver’s technique is developed and validated with other research studies.Then many different scenarios including group of piers,group of groynes with different shapes and combination of groynes and piers are considered for dam break flow modeling.The final results showed that group of piers alone or group of groynes alone have no significant effects on the wave-front depth and celerity but,combination of L-head groyne with piers can decrease the amplitude and celerity of the dam break wavefront or flood wave.In this case,a blockage zone between the groynes and intensive backwater effects behind them were observed.展开更多
Dams are critical and essential elements in any infrastructure and, in front of accidents occurred in many countries, it is extremely important to know the risk of these structures. Inserted in this context, it was fo...Dams are critical and essential elements in any infrastructure and, in front of accidents occurred in many countries, it is extremely important to know the risk of these structures. Inserted in this context, it was found in the technical literature, methods and tools capable of measuring the exposure value by means of indicators. In the study, the highlights were 12 methods of qualitative, semiquantitative and quantitative risk analysis, representing an overview of risk analysis methods available in the literature with potential use in dams, that it has been done into electronic spreadsheets. The case study is performed on a sample of concrete dam and earth/rockfill built and operated by Eletrobr^s Furnas Company, supported by documentary research, projects, field inspections and interviews with experts. After applying the methods and the analysis thereof, has been prepared the Eletrobras Fumas dam risk analysis method which is characterized by adapting the criteria analyzed to the reality of the company's dams and it was also performed the portfolio risk analysis of 18 dams. In spite of the variety and subjectivity of qualitative and semiquantitative methods, the results show that they tend to converge on the analysis of dam based on risk. The application methodology demonstrates the feasibility assessment stage, covering the preliminary analysis for portfolio dams, followed by formal and individual risk analyzes for the most critical structures. These results confirm the applicability of risk analysis techniques, contributing to the consolidation of this toot as fundamental in the dam safety.展开更多
When investigating water flow in spillways and energy dissipation, it is important to know the behavior of the free surfaces. To capture the real dynamic behavior of the free surfaces is therefore crucial when perform...When investigating water flow in spillways and energy dissipation, it is important to know the behavior of the free surfaces. To capture the real dynamic behavior of the free surfaces is therefore crucial when performing simulations. Today, there is a lack in the possibility to model such phenomenon with traditional methods. Hence, this work focuses on a parameter study for one alternative simulation tool available, namely the meshfree, Lagrangian particle method Smoothed Particle Hydrodynamics (SPH). The parameter study includes the choice of equation-of-state (EOS), the artificial viscosity constants, using a dynamic versus a static smoothing length, SPH particle spatial resolution and the finite element method (FEM) mesh scaling of the boundaries. The two dimensional SPHERIC Benchmark test case of dam break evolution over a wet bed was used for comparison and validation. The numerical results generally showed a tendency of the wave front to be ahead of the experimental results, i.e. to have a greater wave front velocity. The choice of EOS, FEM mesh scaling as well as using a dynamic or a static smoothing length showed little or no significant effect on the outcome, though the SPH particle resolution and the choice of artificial viscosity constants had a major impact. A high particle resolution increased the number of flow features resolved for both choices of artificial viscosity constants, but at the expense of increasing the mean error. Furthermore, setting the artificial viscosity constants equal to unity for the coarser cases resulted in a highly viscous and unphysical solution, and thus the relation between the artificial viscosity constants and the particle resolution and its impact on the behavior of the fluid needed to be further investigated.展开更多
Large-scale floods induced by dam failures could cause significant structural damage to buildings and massive loss of life.The coupling effect of large-scale flood spread and building collapse has complex impacts on t...Large-scale floods induced by dam failures could cause significant structural damage to buildings and massive loss of life.The coupling effect of large-scale flood spread and building collapse has complex impacts on the entire flow field,affecting flood risk assessment and building vulnerability evaluation.In this paper,a dynamic elevation change model designed to seamlessly interface with a structural vulnerability assessment model to investigate the interaction effect between floods and buildings is presented.The efficiency of the framework was validated by reconstructing the Gleno Dam-Break flood in Italy.Subsequently,a hydrodynamic model of the Jinsha-Yalong River that considers dynamic building collapse was established.The proposed model was compared with two traditional building treatment approaches and one that ignored the buildings.The results show that the interaction between the flood and buildings decreases the low-velocity area(below 1 m/s)by 7.44%-9.56%while increasing the high velocity area(above 4 m/s)by 10.71%-11.96%.Traditional and neglecting building treatments provide preliminary insights into densely built areas,and the latter could be an alternative for simplification because it can represent the worst-case scenario.Building collapse in response to large-scale floods typically occurs in four stages:flood spread,rapid expansion,gradual expansion,and flood recession.This analysis offers novel perspectives on flood prediction and simulations where the floodplain may contain buildings.This method could be useful for assessing structural vulnerability associated with large building stocks and developing flood mitigation strategies in densely populated areas.展开更多
This paper aims to investigate a dam break in a channel with a bend in the presence of several obstacles.To accurately determine the flood zones,it is necessary to take into account many factors such as terrain,reserv...This paper aims to investigate a dam break in a channel with a bend in the presence of several obstacles.To accurately determine the flood zones,it is necessary to take into account many factors such as terrain,reservoir volume.Numerical modeling was used to determine the flood zone.Numerical modeling based on the Navier-Stokes equations with a turbulent k-epsilon RNG model,the Volume of Fluid(VOF)method and the PISO algorithm were used to analyze the flow in a bend channel at an angle of 10 with the obstacles.To verify the numerical model,a test on dam break in the 450 channel was conducted.The simulation results were compared with experimental data and with the numerical data of existing data.Having been convinced of the correctness of the mathematical model,the authors carried out a numerical simulation of the main problem in three versions:without barriers,with one obstacle,with two obstacles.According to the obtained numerical results,it can be noted that irregular landforms held the flow,a decrease in water level and a slower time for water emergence could be seen.Thus,the water flow without an obstacle,with one obstacle and with two obstacles showed 4.2 s,4.4 s and 4.6 s of the time of water appearance,respectively.This time shift can give a certain advantage when conducting various events to evacuate people.展开更多
In October and November of 2018,the upper reach of the Yangtze River was blocked twice by landslide dams.A large landslide dam on a major river can impound a huge amount of water and trigger catastrophic flooding once...In October and November of 2018,the upper reach of the Yangtze River was blocked twice by landslide dams.A large landslide dam on a major river can impound a huge amount of water and trigger catastrophic flooding once it fails,imposing great risk to the downstream communities.Considering the chain of large dams and densely populated cities along the river,there is an urgent need to improve the system resilience of the Yangtze River to the landslide dam break hazard.This study presents a basin-scale emergency risk management framework based on an overtopping-erosion based dam failure model and a 1-D flood routing analysis model.Basin-wide inundation and detailed flood risk analyses are carried out considering engineering risk mitigation measures,which will facilitate the decision-making on future emergency risk mitigation plans.The proposed framework is applied to the landslide dam on the Yangtze River in November 2018.Results show that excavating a 15 m-depth diversion channel could effectively mitigate the flood risk of downstream areas.Further mitigation measures,including evacuation,removal of obstacles in the river,and preparation of certain intercept capacity in downstream reservoirs,are suggested based on the hazard chain risk analysis.The mitigation results in the case prove the effectiveness of the proposed framework.The incorporation of open-access global databases enables the application of the framework to any large river basin worldwide.展开更多
On August 10,2019,due to the effect of a rainstorm caused by Super Typhoon Lekima,a landslide occurred in Shanzao Village,China.It blocked the Shanzao stream,forming a barrier lake,and then the barrier lake burst.This...On August 10,2019,due to the effect of a rainstorm caused by Super Typhoon Lekima,a landslide occurred in Shanzao Village,China.It blocked the Shanzao stream,forming a barrier lake,and then the barrier lake burst.This is a rare natural disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.This study was built on field surveys,satellite image interpretation,the digital elevation model(DEM),engineering geological analysis and empirical regression.The purpose was to reveal the characteristics and causes of the landslide,the features and formation process of the barrier lake and the dam break flooding discharge.The results show that the volume of the landslide deposit is approximately 2.4×105 m3.The burst mode of the landslide dam is overtopping,which took only 22 minutes from the formation of the landslide dam to its overtopping.The dam-break peak flow was 1353 m3/s,and the average velocity was 2.8–3.0 m/s.This study shows that the strongly weathered rock and soil slope has low strength and high permeability under the condition of heavy rainfall,which reminds us the high risk of landslides and the importance of accurate early warning of landslides under heavy rainfalls in densely populated areas of Southeast China,as well as the severity of the disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.展开更多
An enhanced numerical model for simulating two-dimensional incompressible viscous flow with distorted free surface is reported. The numerical simulation is carried out through the CIP (Constrained Interpolation Prof...An enhanced numerical model for simulating two-dimensional incompressible viscous flow with distorted free surface is reported. The numerical simulation is carried out through the CIP (Constrained Interpolation Profile)-based method, which is described in the paper. A more accurate interface capturing scheme, the VOF/WLIC scheme (VOF:Volume-of-Fluid;WLIC:weighed line interface calculation), is adopted as the interface capturing method. To assess the developed algorithm and its versatility, a selection of test problems are examined, i.e. the square wave propagation, the Zalesak’s rigid body rotation, dam breaking problem with and without obstacles, wave sloshing in an excited wave tank and interaction between extreme waves and a floating body. Excellent agreements are obtained when numerical results are compared with available analytical, experimental, and other numerical results. These examples demonstrate that the use of the VOF/WLIC scheme in the free surface capturing makes better results and also the proposed CIP-based model is capable of predicting the freak wave-related phenomena.展开更多
A method for simulation of free surface problems is presented. Based on the viscous incompressible Navier-Stokes equations, space discretization of the flow is obtained by the least square finite element method. The t...A method for simulation of free surface problems is presented. Based on the viscous incompressible Navier-Stokes equations, space discretization of the flow is obtained by the least square finite element method. The time evolution is obtained by the finite difference method. Lagrangian description is used to track the free surface. The results are compared with the experimental dam break results, including water collapse in a 2D rectangular section and in a 3D cylinder section. A good agreement is achieved for the distance of surge front as well as the height of the residual column.展开更多
Dam break can cause a significant disaster in the downstream, especially, in a valley with cascade reservoirs, which would aggravate the disaster extent. The experimental studies of the dam-break flow of cascade reser...Dam break can cause a significant disaster in the downstream, especially, in a valley with cascade reservoirs, which would aggravate the disaster extent. The experimental studies of the dam-break flow of cascade reservoirs are few and far between at the present, Most of related studies concern the failure of a single dam.. This article presents an experimental study of the characteristics of an instantly filled dam-break flow of cascade reservoirs in a rectangular glass flume with a steep bottom slope. A new method was used to simulate the sudden collapse of the dam. A series of sensors for automatic water-levels were deployed to record the rapid water depth fluctuation. The experimental results show that, the ratio of the initial water depth of the downstream reservoir to that of the upstream reservoir would greatly affect the flood peak water depth in the downstream reservoir area and in the stream channel behind the downstream dam, while the influence of the dam spacing is insignificant. In addition, the comparison between the single reservoir and the cascade reservoirs shows some difference in the dam-break flow pattern and the stage hydrograph at the corresponding gauging points.展开更多
The three-dimensionality extent of the dam break flow over a vertical wall is investigated numerically and experimentally in this paper. The numerical method is based on Reynolds averaged Navier-Stokes(RANS) equatio...The three-dimensionality extent of the dam break flow over a vertical wall is investigated numerically and experimentally in this paper. The numerical method is based on Reynolds averaged Navier-Stokes(RANS) equation that describes the three-dimensional incompressible turbulent flow. The free surface is captured by using the unstructured multi-dimensional interface capturing(UMTHINC) scheme. The equations are discretized on 2-D and 3-D unstructured grids using finite volume method. The numerical simulations are compared with newly conducted experiment with emphasis on the effect of three-dimensionality on both free surface and impact pressure. The comparison between the numerical and experimental results shows good agreement. Furthermore, the results also show that 3-D motion of the flow originates at the moment of impact at the lower corners of the impact wall and propagates to the inner region as time advances. The origin of the three-dimensionality is found to be the turbulence development as well as the relative velocity between the side wall region and the inner region of the wave front at the moment of impact.展开更多
It is of great significance for disaster prevention and mitigation to carry out disaster simulations for dam failure accidents in advance,but at present,there are few professional systems for disaster simulations of t...It is of great significance for disaster prevention and mitigation to carry out disaster simulations for dam failure accidents in advance,but at present,there are few professional systems for disaster simulations of tailings dams.In this paper,we focused on the construction of a virtual geographic environment(VGE)system that provides an effective tool for visualizing the dam-break process of a tailings pond.The dam-break numerical model of the tailings dam based on computational fluid dynamics(CFD)was integrated into the VGE system.The infrastructure of the VGE was supported by a 3-D geographic information system(GIS)with a user-friendly interface for the initiation,visualization,and analysis of the dynamic process of tailings dam failure.Key technologies,including the integration of numerical models,rendering of large-scale scenes,and optimizations of disaster simulation and visualization,were discussed in detail.In the prototype system,information on the run-out path,travel distance,etc.can be obtained to visually describe the flow motion released by two dam failure cases.The simulation results showed that the VGE can be used for the multidimensional,dynamic and interactive visualization of dam-break disasters,and can also be useful for assessing the risk associated with tailings dams.展开更多
The Lattice Boltzmann Method (LBM) was investigated to solve triangular cavity flow and free-surface problems in hydraulic dynamics. Some cases of triangular cavity flow and backward step flow were simulated to show...The Lattice Boltzmann Method (LBM) was investigated to solve triangular cavity flow and free-surface problems in hydraulic dynamics. Some cases of triangular cavity flow and backward step flow were simulated to show the efficiency and stability of this method. Two-dimensional partial dam breaking problem and the propagation and diffraction of dam-break wave around rectangular and circular cylinder were numerically studied successfully. Excellent agreement was obtained between numerical predictions and available results.展开更多
An overlapping moving particle semi-implicit (MPS) method is applied for 3-D free surface flows based on our in-house particle solver MLParticle-SJTU. In this method, the coarse particles are distributed in the whol...An overlapping moving particle semi-implicit (MPS) method is applied for 3-D free surface flows based on our in-house particle solver MLParticle-SJTU. In this method, the coarse particles are distributed in the whole domain and the fine particles are distributed in the local region of interest at the same time. With the fine particles being generated and removed dynamically, an algorithm of generating particles based on the 3-D overlapping volume is developed. Then, a 3-D dam break flow with an obstacle is simulated to validate the overlapping MPS. The qualitative comparison among experimental data and the results obtained by the VOF and the MPS shows that the shape of the free surface obtained by the overlapping MPS is more accurate than that obtained by the UNI-coarse and close to that obtained by the UNI-fine in the overlapping domain. In addition, the water height and the impact pressure at Pi are also in an overall agreement with experimental data. Finally, the CPU time required by the overlapping MPS is about half of that required by the UNl-fine.展开更多
An unstructured finite-volume numerical algorithm was presented for solution of the two-dimensional shallow water equations, based on triangular or arbitrary quadrilateral meshes. The Roe type approximate Riemann solv...An unstructured finite-volume numerical algorithm was presented for solution of the two-dimensional shallow water equations, based on triangular or arbitrary quadrilateral meshes. The Roe type approximate Riemann solver was used to the system. A second-order TVD scheme with the van Leer limiter was used in the space discretization and a two-step Runge-Kutta approach was used in the time discretization. An upwind, as opposed to a pointwise, treatment of the slope source terms was adopted and the semi-implicit treatment was used for the friction source terms. Verification for two-dimension dam-break problems are carried out by comparing the present results with others and very good agreement is shown.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 10572041 and 50779008
文摘Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a typical example of these problems. The basis of SPH was reviewed, including some techniques for governing equation resolution, such as the stepping method and the boundary handling method. Then numerical results of a dam breaking simulation were discussed, and the benefits of concepts like artificial viscosity and position correction were analyzed in detail. When compared with dam breaking simulated by the volume of fluid (VOF) method, the wave profile generated by SPH had good agreement, but the pressure had only reasonable agreement. Improving pressure results is clearly an important next step for research.
文摘The precision modeling of dam break floods can lead to formulation of proper emergency action plan to minimize flood impacts within the economic lifetime of the assets.Application of GIS techniques in integration with hydrological modeling for mapping of the flood inundated areas can play a momentous role in further minimizing the risk and likely damages.In the present study,dam break analysis using DAMBRK model was performed under various likely scenarios.Probable Maximum Flood (PMF)calculated for a return period of 1000 years using deterministic approach was adopted for dam break analysis of the proposed dam under various combinations of breach dimensions.The available downstream river cross-sections data sets were used as input in the model to generate the downstream flood profile.Dam break flow depths generated by the DAMBRK model under various combinations of structural failure are subsequently plotted on Digital Elevation Model(DEM)of the downstream of dam site to map the likely affected area.The simulation results reveals that in one particular case the flood without dam may be more intense if a rainfall of significant intensity takes place.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51479175 and 51679212)Zhejiang Provincial Natural Science Foundation of China(Grant No.LR16E090002)
文摘Numerical simulation of dam-break wave, as an imitation of tsunami hydraulic bore, with a hump of different slopes is performed in this paper using an in-house code, named a Constrained Interpolation Profile (CIP)-based model. The model is built on a Cartesian grid system with the Navier Stokes equations using a CIP method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of solid body boundary. A more accurate interface capturing scheme, the Tangent of hyperbola for interface capturing/Slope weighting (THINC/SW) scheme, is adopted as the interface capturing method. Then, the CIP-based model is applied to simulate the dam break flow problem in a bumpy channel. Considerable attention is paid to the spilling type reflected bore, the following spilling type wave breaking, free surface profiles and water level variations over time. Computations are compared with available experimental data and other numerical results quantitatively and qualitatively. Further investigation is conducted to analyze the influence of variable slopes on the flow features of the tsunami-like bore.
文摘Dam breaks are easily triggered by heavy rains due to extreme weather such as typhoons,causing serious economic losses and casualties.Through the investigation of Chaoshan coastal zone,it is found that there have been dam breaks caused by geological disasters.In the design and management of water conservancy project,it is very important to analyze the effect of disastrous flow caused by dam break on the building.In this paper,the effect of the dam break flow on the cylinder is simulated numerically by taking the water body with initial velocity as the dam break flow,and the flow characteristics around the cylinder and the water body are analyzed.Numerical model adopted the Renault Average Navier-Stokes(RANS)model and volume of fluid(VOF)method to analyze the evolution of free water surface.It is found that there are different patterns of water movement in the process of dam break resulting in the creation of several isolated convex hull forms of dam-break waves on the stationary water surface,which causes longer disturbances in the water near the cylinder and makes the cylinder more vulnerable to fatigue damage.The increase of the height of the dam breaking water will lead to the increase of the hydrodynamic force on the pipeline.This study has guiding significance for the study of dam break and dam body design in water conservancy projects.
基金the National Key Research and Development Program of China(No.2016YFC0303401)the National Natural Science Foundation of China(No.51779236)the National Natural Science Foundation of China-Shandong Joint Fund(No.U1706226)。
文摘An experiment that investigates the interactions between dam-break flow and a floating box is reported in this paper.The interaction processes are described in detail,and the effects of reservoir depth,clearance between the structure and vertical wall,and structure motion on the observed interactions are discussed.Results indicate that interactions are mild if the reservoir depth is relatively small and most of the water flows through under the structure.However,as the reservoir depth increases,the interactions intensify,and overtopping and wave splashing occur.The incident wave is divided into two parts by the structure:1)a jet generated by wave impact and 2)the water flowing through under the structure.The water flowing through under the structure is the main factor influencing the motion of the structure.The phenomenon of secondary slamming is observed in all of the test cases,and the relative motion of the structure and free surface explains the occurrence of secondary slamming.
基金supported by the“National Major Science and Technology Program for Water Pollution Control and Treatment”(2017ZX07101001)“Chinese National Natural Science Foundation”(No.41871072)“Young Scientists Exchange Program(TYSP)”(Grant nos.Iran-18-008 and Iran-18-009)。
文摘This paper aims to numerically investigate the impact of the combination of groynes and vertical piers on mitigating the amplitude and celerity of dam break wave-front.First,a robust numerical model based on the Finite Volume Method(FVM)with the Harten,Lax and van Leer(HLL)approximate Reimann’s solver’s technique is developed and validated with other research studies.Then many different scenarios including group of piers,group of groynes with different shapes and combination of groynes and piers are considered for dam break flow modeling.The final results showed that group of piers alone or group of groynes alone have no significant effects on the wave-front depth and celerity but,combination of L-head groyne with piers can decrease the amplitude and celerity of the dam break wavefront or flood wave.In this case,a blockage zone between the groynes and intensive backwater effects behind them were observed.
文摘Dams are critical and essential elements in any infrastructure and, in front of accidents occurred in many countries, it is extremely important to know the risk of these structures. Inserted in this context, it was found in the technical literature, methods and tools capable of measuring the exposure value by means of indicators. In the study, the highlights were 12 methods of qualitative, semiquantitative and quantitative risk analysis, representing an overview of risk analysis methods available in the literature with potential use in dams, that it has been done into electronic spreadsheets. The case study is performed on a sample of concrete dam and earth/rockfill built and operated by Eletrobr^s Furnas Company, supported by documentary research, projects, field inspections and interviews with experts. After applying the methods and the analysis thereof, has been prepared the Eletrobras Fumas dam risk analysis method which is characterized by adapting the criteria analyzed to the reality of the company's dams and it was also performed the portfolio risk analysis of 18 dams. In spite of the variety and subjectivity of qualitative and semiquantitative methods, the results show that they tend to converge on the analysis of dam based on risk. The application methodology demonstrates the feasibility assessment stage, covering the preliminary analysis for portfolio dams, followed by formal and individual risk analyzes for the most critical structures. These results confirm the applicability of risk analysis techniques, contributing to the consolidation of this toot as fundamental in the dam safety.
文摘When investigating water flow in spillways and energy dissipation, it is important to know the behavior of the free surfaces. To capture the real dynamic behavior of the free surfaces is therefore crucial when performing simulations. Today, there is a lack in the possibility to model such phenomenon with traditional methods. Hence, this work focuses on a parameter study for one alternative simulation tool available, namely the meshfree, Lagrangian particle method Smoothed Particle Hydrodynamics (SPH). The parameter study includes the choice of equation-of-state (EOS), the artificial viscosity constants, using a dynamic versus a static smoothing length, SPH particle spatial resolution and the finite element method (FEM) mesh scaling of the boundaries. The two dimensional SPHERIC Benchmark test case of dam break evolution over a wet bed was used for comparison and validation. The numerical results generally showed a tendency of the wave front to be ahead of the experimental results, i.e. to have a greater wave front velocity. The choice of EOS, FEM mesh scaling as well as using a dynamic or a static smoothing length showed little or no significant effect on the outcome, though the SPH particle resolution and the choice of artificial viscosity constants had a major impact. A high particle resolution increased the number of flow features resolved for both choices of artificial viscosity constants, but at the expense of increasing the mean error. Furthermore, setting the artificial viscosity constants equal to unity for the coarser cases resulted in a highly viscous and unphysical solution, and thus the relation between the artificial viscosity constants and the particle resolution and its impact on the behavior of the fluid needed to be further investigated.
基金supported by the National Natural Science Foundation of China(Grant No.52192671)the National Key Research and Development Program of China(Grant No.2022YFC3090600)+1 种基金the Research Fund of the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(Grant No.SKL2022TS11)the Open Research Fund of Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources(Grant No.Z0202042022)。
文摘Large-scale floods induced by dam failures could cause significant structural damage to buildings and massive loss of life.The coupling effect of large-scale flood spread and building collapse has complex impacts on the entire flow field,affecting flood risk assessment and building vulnerability evaluation.In this paper,a dynamic elevation change model designed to seamlessly interface with a structural vulnerability assessment model to investigate the interaction effect between floods and buildings is presented.The efficiency of the framework was validated by reconstructing the Gleno Dam-Break flood in Italy.Subsequently,a hydrodynamic model of the Jinsha-Yalong River that considers dynamic building collapse was established.The proposed model was compared with two traditional building treatment approaches and one that ignored the buildings.The results show that the interaction between the flood and buildings decreases the low-velocity area(below 1 m/s)by 7.44%-9.56%while increasing the high velocity area(above 4 m/s)by 10.71%-11.96%.Traditional and neglecting building treatments provide preliminary insights into densely built areas,and the latter could be an alternative for simplification because it can represent the worst-case scenario.Building collapse in response to large-scale floods typically occurs in four stages:flood spread,rapid expansion,gradual expansion,and flood recession.This analysis offers novel perspectives on flood prediction and simulations where the floodplain may contain buildings.This method could be useful for assessing structural vulnerability associated with large building stocks and developing flood mitigation strategies in densely populated areas.
基金supported by the grant from the Ministry of science and Higher education of the Republic of Kazakhstan(AP23489948).
文摘This paper aims to investigate a dam break in a channel with a bend in the presence of several obstacles.To accurately determine the flood zones,it is necessary to take into account many factors such as terrain,reservoir volume.Numerical modeling was used to determine the flood zone.Numerical modeling based on the Navier-Stokes equations with a turbulent k-epsilon RNG model,the Volume of Fluid(VOF)method and the PISO algorithm were used to analyze the flow in a bend channel at an angle of 10 with the obstacles.To verify the numerical model,a test on dam break in the 450 channel was conducted.The simulation results were compared with experimental data and with the numerical data of existing data.Having been convinced of the correctness of the mathematical model,the authors carried out a numerical simulation of the main problem in three versions:without barriers,with one obstacle,with two obstacles.According to the obtained numerical results,it can be noted that irregular landforms held the flow,a decrease in water level and a slower time for water emergence could be seen.Thus,the water flow without an obstacle,with one obstacle and with two obstacles showed 4.2 s,4.4 s and 4.6 s of the time of water appearance,respectively.This time shift can give a certain advantage when conducting various events to evacuate people.
基金financial support from the NSFC/RGC Joint Research Scheme(N_HKUST620/20 and 42061160480)the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(HZQB-KCZYB-2020083).
文摘In October and November of 2018,the upper reach of the Yangtze River was blocked twice by landslide dams.A large landslide dam on a major river can impound a huge amount of water and trigger catastrophic flooding once it fails,imposing great risk to the downstream communities.Considering the chain of large dams and densely populated cities along the river,there is an urgent need to improve the system resilience of the Yangtze River to the landslide dam break hazard.This study presents a basin-scale emergency risk management framework based on an overtopping-erosion based dam failure model and a 1-D flood routing analysis model.Basin-wide inundation and detailed flood risk analyses are carried out considering engineering risk mitigation measures,which will facilitate the decision-making on future emergency risk mitigation plans.The proposed framework is applied to the landslide dam on the Yangtze River in November 2018.Results show that excavating a 15 m-depth diversion channel could effectively mitigate the flood risk of downstream areas.Further mitigation measures,including evacuation,removal of obstacles in the river,and preparation of certain intercept capacity in downstream reservoirs,are suggested based on the hazard chain risk analysis.The mitigation results in the case prove the effectiveness of the proposed framework.The incorporation of open-access global databases enables the application of the framework to any large river basin worldwide.
基金supported by the Natural Science Research Project of the Colleges and Universities in Anhui Province(KJ2020ZD34)the National Natural Science Foundation of China(41807267 and 42077259).
文摘On August 10,2019,due to the effect of a rainstorm caused by Super Typhoon Lekima,a landslide occurred in Shanzao Village,China.It blocked the Shanzao stream,forming a barrier lake,and then the barrier lake burst.This is a rare natural disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.This study was built on field surveys,satellite image interpretation,the digital elevation model(DEM),engineering geological analysis and empirical regression.The purpose was to reveal the characteristics and causes of the landslide,the features and formation process of the barrier lake and the dam break flooding discharge.The results show that the volume of the landslide deposit is approximately 2.4×105 m3.The burst mode of the landslide dam is overtopping,which took only 22 minutes from the formation of the landslide dam to its overtopping.The dam-break peak flow was 1353 m3/s,and the average velocity was 2.8–3.0 m/s.This study shows that the strongly weathered rock and soil slope has low strength and high permeability under the condition of heavy rainfall,which reminds us the high risk of landslides and the importance of accurate early warning of landslides under heavy rainfalls in densely populated areas of Southeast China,as well as the severity of the disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.
基金financially supported by the National Natural Science Foundation of China(Grant No.51209184)the Fundamental Research Funds for the Central Universities(Grant No.2012QNA4020)+1 种基金the Zhejiang Open Foundation of the Most Important Subjects,the Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2013SS03)the Educational Commission of Zhejiang Province of China(Grant No.Y201225713)
文摘An enhanced numerical model for simulating two-dimensional incompressible viscous flow with distorted free surface is reported. The numerical simulation is carried out through the CIP (Constrained Interpolation Profile)-based method, which is described in the paper. A more accurate interface capturing scheme, the VOF/WLIC scheme (VOF:Volume-of-Fluid;WLIC:weighed line interface calculation), is adopted as the interface capturing method. To assess the developed algorithm and its versatility, a selection of test problems are examined, i.e. the square wave propagation, the Zalesak’s rigid body rotation, dam breaking problem with and without obstacles, wave sloshing in an excited wave tank and interaction between extreme waves and a floating body. Excellent agreements are obtained when numerical results are compared with available analytical, experimental, and other numerical results. These examples demonstrate that the use of the VOF/WLIC scheme in the free surface capturing makes better results and also the proposed CIP-based model is capable of predicting the freak wave-related phenomena.
基金Project supported by the National Natural Science Foundation of China (Nos.10302013,10572022)
文摘A method for simulation of free surface problems is presented. Based on the viscous incompressible Navier-Stokes equations, space discretization of the flow is obtained by the least square finite element method. The time evolution is obtained by the finite difference method. Lagrangian description is used to track the free surface. The results are compared with the experimental dam break results, including water collapse in a 2D rectangular section and in a 3D cylinder section. A good agreement is achieved for the distance of surge front as well as the height of the residual column.
基金Project supported by the National Basic Research Program of China(973 Program,Grant No.2007CB714105)the National Natural Science Foundation of China(Grant No.50909067)
文摘Dam break can cause a significant disaster in the downstream, especially, in a valley with cascade reservoirs, which would aggravate the disaster extent. The experimental studies of the dam-break flow of cascade reservoirs are few and far between at the present, Most of related studies concern the failure of a single dam.. This article presents an experimental study of the characteristics of an instantly filled dam-break flow of cascade reservoirs in a rectangular glass flume with a steep bottom slope. A new method was used to simulate the sudden collapse of the dam. A series of sensors for automatic water-levels were deployed to record the rapid water depth fluctuation. The experimental results show that, the ratio of the initial water depth of the downstream reservoir to that of the upstream reservoir would greatly affect the flood peak water depth in the downstream reservoir area and in the stream channel behind the downstream dam, while the influence of the dam spacing is insignificant. In addition, the comparison between the single reservoir and the cascade reservoirs shows some difference in the dam-break flow pattern and the stage hydrograph at the corresponding gauging points.
文摘The three-dimensionality extent of the dam break flow over a vertical wall is investigated numerically and experimentally in this paper. The numerical method is based on Reynolds averaged Navier-Stokes(RANS) equation that describes the three-dimensional incompressible turbulent flow. The free surface is captured by using the unstructured multi-dimensional interface capturing(UMTHINC) scheme. The equations are discretized on 2-D and 3-D unstructured grids using finite volume method. The numerical simulations are compared with newly conducted experiment with emphasis on the effect of three-dimensionality on both free surface and impact pressure. The comparison between the numerical and experimental results shows good agreement. Furthermore, the results also show that 3-D motion of the flow originates at the moment of impact at the lower corners of the impact wall and propagates to the inner region as time advances. The origin of the three-dimensionality is found to be the turbulence development as well as the relative velocity between the side wall region and the inner region of the wave front at the moment of impact.
基金supported by National Key Research and Development Program of China[grant number 2017YFB0504203].
文摘It is of great significance for disaster prevention and mitigation to carry out disaster simulations for dam failure accidents in advance,but at present,there are few professional systems for disaster simulations of tailings dams.In this paper,we focused on the construction of a virtual geographic environment(VGE)system that provides an effective tool for visualizing the dam-break process of a tailings pond.The dam-break numerical model of the tailings dam based on computational fluid dynamics(CFD)was integrated into the VGE system.The infrastructure of the VGE was supported by a 3-D geographic information system(GIS)with a user-friendly interface for the initiation,visualization,and analysis of the dynamic process of tailings dam failure.Key technologies,including the integration of numerical models,rendering of large-scale scenes,and optimizations of disaster simulation and visualization,were discussed in detail.In the prototype system,information on the run-out path,travel distance,etc.can be obtained to visually describe the flow motion released by two dam failure cases.The simulation results showed that the VGE can be used for the multidimensional,dynamic and interactive visualization of dam-break disasters,and can also be useful for assessing the risk associated with tailings dams.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10371118, 90411009).
文摘The Lattice Boltzmann Method (LBM) was investigated to solve triangular cavity flow and free-surface problems in hydraulic dynamics. Some cases of triangular cavity flow and backward step flow were simulated to show the efficiency and stability of this method. Two-dimensional partial dam breaking problem and the propagation and diffraction of dam-break wave around rectangular and circular cylinder were numerically studied successfully. Excellent agreement was obtained between numerical predictions and available results.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379125,51490675,11432009 and 51579145)
文摘An overlapping moving particle semi-implicit (MPS) method is applied for 3-D free surface flows based on our in-house particle solver MLParticle-SJTU. In this method, the coarse particles are distributed in the whole domain and the fine particles are distributed in the local region of interest at the same time. With the fine particles being generated and removed dynamically, an algorithm of generating particles based on the 3-D overlapping volume is developed. Then, a 3-D dam break flow with an obstacle is simulated to validate the overlapping MPS. The qualitative comparison among experimental data and the results obtained by the VOF and the MPS shows that the shape of the free surface obtained by the overlapping MPS is more accurate than that obtained by the UNI-coarse and close to that obtained by the UNI-fine in the overlapping domain. In addition, the water height and the impact pressure at Pi are also in an overall agreement with experimental data. Finally, the CPU time required by the overlapping MPS is about half of that required by the UNl-fine.
文摘An unstructured finite-volume numerical algorithm was presented for solution of the two-dimensional shallow water equations, based on triangular or arbitrary quadrilateral meshes. The Roe type approximate Riemann solver was used to the system. A second-order TVD scheme with the van Leer limiter was used in the space discretization and a two-step Runge-Kutta approach was used in the time discretization. An upwind, as opposed to a pointwise, treatment of the slope source terms was adopted and the semi-implicit treatment was used for the friction source terms. Verification for two-dimension dam-break problems are carried out by comparing the present results with others and very good agreement is shown.