Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative id...Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks.展开更多
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas...The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.展开更多
To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression,a damage constitutive model combining hydro-chemical damage with coupli...To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression,a damage constitutive model combining hydro-chemical damage with coupling damage of micro-flaws and macro-cracks is proposed.Firstly,based on phenomenological theory,the damage variable of the rock-like specimens subjected to water environment erosion and chemical corrosion is obtained.Secondly,a coupled damage variable for cracked rock-like specimens is derived based on the Lemaitre strain equivalence hypothesis,which combines the Weibull statistical damage model for micro-flaws and the fracture mechanics model for a macro single crack.Then,considering the residual strength characteristics of the rock-like materials,the damage variable is modified by introducing the correction coefficient,and the damage constitutive model of the corroded rock-like specimens with a single crack under uniaxial compression is established.The model is verified by comparing the experimental stress−strain curves,and the results are in good agreement with those provided in the literature.Finally,the correction coefficient of the damage variable proposed in this paper is discussed.The damage constitutive model developed in this paper provides an effective method to describe the stress−strain relationship and residual strength characteristics of the corroded rock-like specimens with a single crack under uniaxial compression.展开更多
For understanding acoustic emission (AE) activity and accumulation of micro-damage inside rock under pure tensile state, the AE signals has been monitored on the test of directly tension on two kinds of marble speci...For understanding acoustic emission (AE) activity and accumulation of micro-damage inside rock under pure tensile state, the AE signals has been monitored on the test of directly tension on two kinds of marble specimens. A tensile constitutive model was proposed with the damage factor calculated by AE energy rate. The tensile strength of marble was discrete obviously and was sensitive to the inside microdefects and grain composition. With increasing of loading, the tensile stress-strain curve obviously showed nonlinear with the tensile tangent modulus decreasing. In repeated loading cycle, the tensile elastic modulus was less than that in the previous loading cycle because of the generation of micro damage during the prior loading. It means the linear weakening occurring in the specimens. The AE activity was corresponding with occurrence of nonlinear deformation. In the initial loading stage which only elastic deformation happened on the specimens, there were few AE events occurred; while when the nonlinear deformation happened with increasing of loading, lots of AE events were generated. The quantity and energy of AE events were proportionally related to the variation of tensile tangent modulus. The Kaiser effect of AE activity could be clearly observed in tensile cycle loading. Based on the theory of damage mechanics, the damage factor was defined by AE energy rate and the tensile damage constitutive model was proposed which only needed two property constants. The theoretical stress-strain curve was well fitted with the curve plotted with tested datum and the two property constants were easily gotten by the laboratory testing.展开更多
Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based ...Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based on the classic elastoplastic and Perzyna over-stress viscoplastic theories,as well as triaxial unloading confining pressure test and triaxial unloading creep test results,an elastoplastic and viscoplastic damage constitutive model is established for the short-and long-term dilatancy and fracturing behavior of soft rock squeezing deformation.Firstly,the criteria for each deformation and failure stage are expressed as a linear function of confining pressure.Secondly,the total damage evolution equation considering time-dependent damage is proposed,including the initial damage produced at the excavation instant,in which the damage variable increases exponentially with the lateral strain,and creep damage.Thirdly,a transient five-stages elasto-plastic constitutive equation for the short-term deformation after excavation that comprised of elasticity,pre-peak damage-dilatancy,post-peak brittle-drop,linear strain-softening,and residual perfectly-plastic regimes is developed based on incremental elasto-plastic theory and the nonassociated flow rule.Fourthly,regarding the timedependent properties of soft rock,based on the Perzyna viscoplastic over-stress theory,a viscoplastic damage model is set up to capture creep damage and dilatancy behavior.Viscoplastic strain is produced when the stress exceeds the initial static yield surface fs;the distance between the static yield surface fs and the dynamic yield surface fd determines the viscoplastic strain rate.Finally,the established constitutive model is numerically implemented and field applied to the-848 m belt conveyer haulage roadway of Huainan Panyidong Coal Mine.Laboratory test results and in-situ monitoring results validate the rationality of the established constitutive model.The presented model takes both the transient and time-dependent damage and fracturing into consideration.展开更多
Block piezoelectric ceramics(PZTs)are often used in impact igniters to provide activation energy for electric initiators.Under the action of strong impact stress,PZTs release electric energy accompanied by crack initi...Block piezoelectric ceramics(PZTs)are often used in impact igniters to provide activation energy for electric initiators.Under the action of strong impact stress,PZTs release electric energy accompanied by crack initiation,propagation and crushing.At present,the electrical output performance of PZTs in projectile is usually calculated by quasi-static piezoelectric equation without considering the dynamic effect caused by strong impact and the influence of crack propagation on material properties.So the ignition parameters are always not accurately predicted.To tackle this,a PZT dynamic damage constitutive model considering crack propagation is established based on the dynamic impact test and the crack propagation theory of brittle materials.The model is then embedded into the ABAQUS subroutine and used to simulate the electromechanical response of the impact igniter during the impact of a small caliber projectile on the target.Meanwhile,the experiments of projectile with impact igniter impact on the target are carried out.The comparison between experimental and numerical simulation results show that the established dynamic damage model can effectively predict the dynamic electromechanical response of PZTs in the missile service environment.展开更多
The purpose of the current work is the development and application of a new identification method of material parameters of elastoplastic damage constitutive model under large strains. A relationship relating the intr...The purpose of the current work is the development and application of a new identification method of material parameters of elastoplastic damage constitutive model under large strains. A relationship relating the intrinsic and extrinsic parameters of a reference material is built and transformed in equivalence relation. Extrinsic parameters concern the shape of their experimental tensile force/elongation curve, however, intrinsic parameters deal with Swift hardening law coupled with an isotropic damage variable. The relationship is carried out from a statistical characterization of a material reference (standard-steel E24). It based on multiple linear regression of a data set obtained according to a full factor design of numerical simulations of mechanical tensile tests. All materials satisfying this equivalence relation belong to the same equivalence class. This is motivated by observing that gathered materials must behave somewhat like the reference material. The material parameters can be immediately identified by only one task by running the found relationship. The current method facilitates the identification procedure and offers a substantial savings in CPU time. However it just needs only one simulation for the identification of similar behavior instead of the few hundred required when using other methods.展开更多
To improve the resource utilization of recycled aggregate concrete(RAC)and make use of the unique pozzolanic activation characteristics of iron ore tailing(IOT),the constitutive curves of tailing recycled concrete(TRC...To improve the resource utilization of recycled aggregate concrete(RAC)and make use of the unique pozzolanic activation characteristics of iron ore tailing(IOT),the constitutive curves of tailing recycled concrete(TRC)before and after carbonization were analyzed theoretically,experimentally and microscopically.Firstly,according to the experimental data,the damage constitutive and related damage parameters of TRC were theoretically established by Weibull probability distribution function.Secondly,the comprehensive damage parameter b under different working conditions was studied.Finally,the damage mechanism was formed by EDS and SEM.The results showed that the damage constitutive model based on Weibull probability distribution function was in good agreement with the experimental results.Under each carbonization period,the b first decreased and then rose with the increase of tailings content.When its content was 30%,the b values of TRC were minimized,which were 22.14%,20.99%,25.39%lower than those of NAC,and 41.09%,34.89%,35.44%lower than those of RAC,indicating that IOT had a relatively good optimization effect on the constitutive curve of RAC.The microscopic analysis results also proved that the IOT addition with a proper amount would improve the matrix structure of RAC and increased its compactness,but when the content was higher,it would also cause harmful cracks in its matrix structure and reduced its density.Therefore,the optimal tailing content was about 30%.This paper provided a new method for damage constitutive calculation and analysis of TRC before and after carbonization.展开更多
The deformation work rate can be expressed by the time rate of pair functional potentials which describe the energy of materi- als in terms of atomic bonds and atom embedding interactions. According to Cauchy-Born rul...The deformation work rate can be expressed by the time rate of pair functional potentials which describe the energy of materi- als in terms of atomic bonds and atom embedding interactions. According to Cauchy-Born rule, the relations between the micro- scopic deformations of atomic bonds and electron gas and macroscopic deformation are established. Further, atomic bonds are grouped according to their directions, and atomic bonds in the same direction are simplified as a spring-bundle component. Atom embedding interactions in unit reference volume are simplified as a cubage component. Consequently, a material model com- posed of spring-bundle components and a cubage component is established. Since the essence of damage is the decrease and loss of atomic bonding forces, the damage effect can be reflected by the response functions of these two kinds of components. For- mulating the mechanical responses of two kinds of components, the corresponding elasto-damage constitutive equations are de- rived. Considering that slip is the main plastic deformation mechanism of polycrystalline metals, the slip systems of crystal are extended to polycrystalline, and the slip components are proposed to describe the plastic deformation. Based on the decomposition of deformation gradient and combining the plastic response with the elasto-damage one, the elasto-plastic damage constitutive equations are derived. As a result, a material model iormulated with spring-bundle components, a cubage component and slip components is established. Different from phenomenological constitutive theories, the mechanical property of materials depends on the property of components rather than that directly obtained on the representative volume element. The effect of finite deformation is taken into account in this model. Parameter calibration procedure and the basic characteristics of this model are discussed.展开更多
The paper is to design and construct a coupled elasto-plasticity damage constitutive model for concrete.Based on the energy dissipation principle,the Hsieh-Ting-Chen four-parameter yield function is used.The model can...The paper is to design and construct a coupled elasto-plasticity damage constitutive model for concrete.Based on the energy dissipation principle,the Hsieh-Ting-Chen four-parameter yield function is used.The model can reflect different strength characteristics of concrete in tension and compression,and reduce the limitation and lacuna of the traditional damage constitutive models for concrete.Furthermore,numerical test for concrete stress-strain relation under uniaxial tension and compression is given.Moreover,the damage process of concrete gravity dam is calculated and analyzed in seismic load.Compared with other damage constitutive models,the proposed model contains only one unknown parameter and the other parameters can be found in the Hsieh-Ting-Chen four-parameter yield function.The same damage evolution law,which is used for tension and compression,is good for determining stress-strain constitutive and damage characteristics in complex stress state.This coupled damage constitutive models can be applied in analyzing damage of concrete gravity dam and arch dam.展开更多
Using the Splitting Hopkinson Pressure Bar (SHPB) experimental system, investigations were made into the dynamic mechanical performances of underground soft rocks. The experiments proved that the measured stress-str...Using the Splitting Hopkinson Pressure Bar (SHPB) experimental system, investigations were made into the dynamic mechanical performances of underground soft rocks. The experiments proved that the measured stress-strain curves display the characteristics of plastic deformation. By making use of a revised overstress constitutive formula for the stress model and by taking into account that the strain rate and strain are a function of I - E(t)/Eo, a revised overstress constitutive formula for the stress model was simplified by applying dimensional analysis and consequently, a simplified overstress formula was obtained for the stress model. Then, by taking into consideration the effects of damage under a dynamic load on the dynamic loading strength of the rock, the continuous damage theory and the statistical strength theory were introduced into the development of the simplified overstress constitutive formula for the stress model. Hence, a damage-based constitutive formula for an overstress model, which can be appropriately applied to the analysis of full dynamic stress-strain curves, was developed. By using the simplified damage-based constitutive formula for an overstress model, the actually measured curves are fitted, indicating that the fitting curves and those actually measured are in good agreement.展开更多
In order to study the failure mechanism of backfill and the reasonable matches between backfill and rock mass, and to achieve the object of safe and efficient mining in metal mine, four types of backfills were tested ...In order to study the failure mechanism of backfill and the reasonable matches between backfill and rock mass, and to achieve the object of safe and efficient mining in metal mine, four types of backfills were tested under uniaxial compression loading, with cement?tailing ratios of 0.250:1, 0.125:1, 0.100:1 and 0.083:1, respectively. With the help of the stress?strain curves, the deformation and failure characteristics of different backfills with differing cement?tailing ratios were analyzed. Based on the experimental results, the damage constitutive equations of cemented backfills with four cement?tailing ratios were proposed on the basis of damage mechanics. Moreover, comparative analysis of constitutive model and experimental results were made to verify the reliability of the damage model. In addition, an energy model using catastrophe theory to obtain the instability criteria of system was established to study the interaction between backfill and rock mass, and then the system instability criterion was deduced. The results show that there are different damage characteristics for different backfills, backfills with lower cement?tailing ratio tend to have a lower damage value when stress reaches peak value, and damage more rapidly and more obviously in failure process after peak value of stress; the stiffness and elastic modulus of rock mass with lower strength are more likely to lead to system instability. The results of this work provide a scientific basis for the rational strength design of backfill mine.展开更多
Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soi...Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soil and the mechanics of damage. Undisturbed expansive soil was considered as a compound of non-damaged part and damaged part. The behavior of the non-damaged part was described using non-linear constitutive model of unsaturated soil. The property of the damaged part was described using a damage evolution equation and two yield surfaces, i.e., loading yield (LY) and shear yield (SY). Furthermore, a consolidation model for unsaturated undisturbed expansive soil was established and a FEM program named UESEPDC was designed. Numerical analysis on solid-liquid-gas tri-phases and multi-field couple problem was conducted for four stages and fields of stress, displacement, pore water pressure, pore air pressure, water content, suction, and the damage region as well as plastic region in an expansive soil slope were obtained.展开更多
a damage constitutive model comprising two dynamite sticks is established and handled with the transient dynamics finite element computer program PRONTO-3D to study rock damage and fragmentation during blasting. Simul...a damage constitutive model comprising two dynamite sticks is established and handled with the transient dynamics finite element computer program PRONTO-3D to study rock damage and fragmentation during blasting. Simulation tests find that tensile stress by detonation gives rise to tensile bulk strain and consequently damage in the material. Maximum bulk strain is observed in simultaneous detonations of the two dynamite sticks. It is demonstrated that the proposed method is applicable to studying the process of rock damage by blasting as well as its affecting factors.展开更多
When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensio...When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case.展开更多
With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electr...With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electromagnetic braking technology to recoil mechanism.In this paper,prototype tests of a certain artillery were carried out to verify the feasibility of the electromagnetic brake(EMB)and obtain the electromagnetic braking force.Due to the brittleness of Nd Fe B,in order to eliminate the worry about the safety of EMB,SHPB experiments of Nd Fe B were carried out.Then,based on the assumption of uniform crack distribution,the law of crack propagation and damage accumulation was described theoretically,and the damage constitutive model suitable for brittle materials was proposed by combining the Zhu-Wang-Tang(ZWT)equation.Finally,the numerical simulation model of the artillery prototype was established and through calculation,the dynamic mechanical characteristics of Nd Fe B in the prototype were analyzed.The calculation results show that the strength of Nd Fe B can meet the requirements of the use in the working process.From the perspective of damage factor,the damage value of the permanent magnet on the far right is larger,and the damage value of the inner ring gradually decreases to the outer ring.展开更多
Numerical simulation is known as an effective method for mechanical properties during frozen soil excavation.In order to reveal the development of cutting force,effective stress and cutting fragments in frozen silt du...Numerical simulation is known as an effective method for mechanical properties during frozen soil excavation.In order to reveal the development of cutting force,effective stress and cutting fragments in frozen silt during the cutting process,we introduce an explicit finite element program LS-DYNA to establish a two-dimensional numerical model of the frozen soil cut.We also use the Holmquist-Johnson-Cook(HJC)damage constitutive model for simulating the variation of soil mechanical properties according to the strong dependence between the cutting tool and frozen silt during the process with different cutting depths,angles and velocities.Meanwhile,a series of experimental results are acquired of frozen silt cutting to prove the application of the HJC model during simulation of cutting force variations.The result shows that the cutting force and fragment size are strongly influenced by cutting depths and cutting velocities increased,and the maximum effective stress at points where the tool contacts frozen soil during the cutting process.In addition,when the cutting angle is 52°,the cutting force is the smallest,and the cutting angle is optimum.Thus,the prediction of frozen soil mechanical properties on the cutting process by this model is conducive to selecting machinery equipment in the field.展开更多
The damage evolution and dynamic performance of a cement asphalt(CA)mortar layer of slab track subjected to vehicle dynamic load is investigated in this paper.Initially,a statistical damage constitutive model for the ...The damage evolution and dynamic performance of a cement asphalt(CA)mortar layer of slab track subjected to vehicle dynamic load is investigated in this paper.Initially,a statistical damage constitutive model for the CA mortar layer is developed using continuous damage mechanics and probability theory.In this model,the strength of the CA mortar elements is treated as a random variable,which follows the Weibull distribution.The inclusion of strain rate dependence affords considering its influence on the damage development and the transition between viscosity and elasticity.Comparisons with experimental data support the reliability of the model.A three-dimensional finite element(FE)model of a slab track is then created with the commercial software ABAQUS,where the devised model for the CA mortar is implemented as a user-defined material subroutine.Finally,a vertical vehicle model is coupled with the FE model of the slab track,through the wheel-rail contact forces,based on the nonlinear Hertzian contact theory.The evolution of the damage and of the dynamic performance of the CA mortar layer with various initial damage is investigated under the train and track interaction.The analysis indicates that the proposed model is capable of predicting the damage evolution of the CA mortar layer exposed to vehicle dynamic load.The dynamic compressive strain,the strain rate,and the induced damage increase significantly with an increase in the initial damage,whereas the dynamic compressive stress exhibits a sharp decrease with the increasing initial damage.Also,it is found that the strain rate dependence significantly influences the damage evolution and the dynamic behavior of the CA mortar layer.展开更多
Based on the thermodynamic theory, an orthotropic damage constitutive model was developed to describe the nonlinear mechanical behavior of C/SiC composites. The different nonlinear kinematic and isotropic hardening fu...Based on the thermodynamic theory, an orthotropic damage constitutive model was developed to describe the nonlinear mechanical behavior of C/SiC composites. The different nonlinear kinematic and isotropic hardening functions were adopted to describe accurately the damage evolution processes. The damage variables were defined with the damaged modulus and the initial undamaged modulus on energy equivalence principle. The initial orthotropy and damage coupling were presented in the damage yield function. Tensile and in-plane shear loading and unloading tests were performed, and a good agreement between the model and the experimental results was achieved.展开更多
Geological hazards caused by high-temperature rocks cooling down after encountering water are closely related to underground mining and tunneling projects.To fully understand the impact of temperature changes on the m...Geological hazards caused by high-temperature rocks cooling down after encountering water are closely related to underground mining and tunneling projects.To fully understand the impact of temperature changes on the mechanical properties of rocks,yellow rust granite samples were subjected to heating-natural cooling and heating-water cooling cycles to experimentally study the effects of these processes on the mechanical properties of the samples.The mechanism of the heating-cooling process on the macromechanical properties of the rock was discussed.Based on the Drucker-Prager criterion and Weibull distribution function,a damage variable correction factor was introduced to reflect the post-peak strain softening characteristics,and a thermo-mechanical coupled damage constitutive model of the granite was established.The results showed that in the natural cooling mode,the mechanical properties deteriorate significantly when the temperature exceeded 600C,and the failure mode changed from brittle failure to ductile failure.In the water cooling mode,the peak strength and deformation modulus increased at temperatures below 400C with an increase in the cycle number,while at 600C,the peak strength and elastic modulus notably decreased.The peak strain increased with the increase of the cycle number and temperature at all temperatures,and the failure mode of the granite tended to change from tensile failure mode to shear failure mode.The experimental results were used to validate the damage constitutive model.The shape parameter r and scale parameter S in the Weibull distribution function of the model were used as indicators to reflect the brittleness degree and peak strength.This study helps to understand the behavior of rocks in hightemperature environments,in order to prevent and mitigate potential geological hazards.展开更多
基金Projects(2021RC3007,2020RC3090)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProjects(52374150,52174099)supported by the National Natural Science Foundation of China。
文摘Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks.
基金funded by the National Natural Science Foundation of China(Grant No.12272247)National Key Project(Grant No.GJXM92579)Major Research and Development Project of Metallurgical Corporation of China Ltd.in the Non-Steel Field(Grant No.2021-5).
文摘The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.
基金Project(FRF-IDRY-20-013)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(51974014,52074020)supported by the National Natural Science Foundation of China。
文摘To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression,a damage constitutive model combining hydro-chemical damage with coupling damage of micro-flaws and macro-cracks is proposed.Firstly,based on phenomenological theory,the damage variable of the rock-like specimens subjected to water environment erosion and chemical corrosion is obtained.Secondly,a coupled damage variable for cracked rock-like specimens is derived based on the Lemaitre strain equivalence hypothesis,which combines the Weibull statistical damage model for micro-flaws and the fracture mechanics model for a macro single crack.Then,considering the residual strength characteristics of the rock-like materials,the damage variable is modified by introducing the correction coefficient,and the damage constitutive model of the corroded rock-like specimens with a single crack under uniaxial compression is established.The model is verified by comparing the experimental stress−strain curves,and the results are in good agreement with those provided in the literature.Finally,the correction coefficient of the damage variable proposed in this paper is discussed.The damage constitutive model developed in this paper provides an effective method to describe the stress−strain relationship and residual strength characteristics of the corroded rock-like specimens with a single crack under uniaxial compression.
文摘For understanding acoustic emission (AE) activity and accumulation of micro-damage inside rock under pure tensile state, the AE signals has been monitored on the test of directly tension on two kinds of marble specimens. A tensile constitutive model was proposed with the damage factor calculated by AE energy rate. The tensile strength of marble was discrete obviously and was sensitive to the inside microdefects and grain composition. With increasing of loading, the tensile stress-strain curve obviously showed nonlinear with the tensile tangent modulus decreasing. In repeated loading cycle, the tensile elastic modulus was less than that in the previous loading cycle because of the generation of micro damage during the prior loading. It means the linear weakening occurring in the specimens. The AE activity was corresponding with occurrence of nonlinear deformation. In the initial loading stage which only elastic deformation happened on the specimens, there were few AE events occurred; while when the nonlinear deformation happened with increasing of loading, lots of AE events were generated. The quantity and energy of AE events were proportionally related to the variation of tensile tangent modulus. The Kaiser effect of AE activity could be clearly observed in tensile cycle loading. Based on the theory of damage mechanics, the damage factor was defined by AE energy rate and the tensile damage constitutive model was proposed which only needed two property constants. The theoretical stress-strain curve was well fitted with the curve plotted with tested datum and the two property constants were easily gotten by the laboratory testing.
基金financially supported by the National Natural Science Foundation of China(Grant No.52074258,Grant No.41941018,Grant No.51974289,and Grant No.51874232)the Natural Science Basic Research Program of Shaanxi Province(Shaanxi Coal and Chemical Industry Group Co.,Ltd.Joint Fund Project,Grant No.2021JLM-06)the open project of State Key Laboratory of Shield Machine and Boring Technology(Grant No.E01Z440101)。
文摘Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based on the classic elastoplastic and Perzyna over-stress viscoplastic theories,as well as triaxial unloading confining pressure test and triaxial unloading creep test results,an elastoplastic and viscoplastic damage constitutive model is established for the short-and long-term dilatancy and fracturing behavior of soft rock squeezing deformation.Firstly,the criteria for each deformation and failure stage are expressed as a linear function of confining pressure.Secondly,the total damage evolution equation considering time-dependent damage is proposed,including the initial damage produced at the excavation instant,in which the damage variable increases exponentially with the lateral strain,and creep damage.Thirdly,a transient five-stages elasto-plastic constitutive equation for the short-term deformation after excavation that comprised of elasticity,pre-peak damage-dilatancy,post-peak brittle-drop,linear strain-softening,and residual perfectly-plastic regimes is developed based on incremental elasto-plastic theory and the nonassociated flow rule.Fourthly,regarding the timedependent properties of soft rock,based on the Perzyna viscoplastic over-stress theory,a viscoplastic damage model is set up to capture creep damage and dilatancy behavior.Viscoplastic strain is produced when the stress exceeds the initial static yield surface fs;the distance between the static yield surface fs and the dynamic yield surface fd determines the viscoplastic strain rate.Finally,the established constitutive model is numerically implemented and field applied to the-848 m belt conveyer haulage roadway of Huainan Panyidong Coal Mine.Laboratory test results and in-situ monitoring results validate the rationality of the established constitutive model.The presented model takes both the transient and time-dependent damage and fracturing into consideration.
基金supported by the National Natural Science Foundation of China(Grant No.12172232)the project of Key Laboratory of Impact and Safety Engineering(Ningbo University,China)+1 种基金Ministry of Education(CJ202206)supported by the scientific research support plan of introducing high-level talents from Shenyang Ligong University。
文摘Block piezoelectric ceramics(PZTs)are often used in impact igniters to provide activation energy for electric initiators.Under the action of strong impact stress,PZTs release electric energy accompanied by crack initiation,propagation and crushing.At present,the electrical output performance of PZTs in projectile is usually calculated by quasi-static piezoelectric equation without considering the dynamic effect caused by strong impact and the influence of crack propagation on material properties.So the ignition parameters are always not accurately predicted.To tackle this,a PZT dynamic damage constitutive model considering crack propagation is established based on the dynamic impact test and the crack propagation theory of brittle materials.The model is then embedded into the ABAQUS subroutine and used to simulate the electromechanical response of the impact igniter during the impact of a small caliber projectile on the target.Meanwhile,the experiments of projectile with impact igniter impact on the target are carried out.The comparison between experimental and numerical simulation results show that the established dynamic damage model can effectively predict the dynamic electromechanical response of PZTs in the missile service environment.
文摘The purpose of the current work is the development and application of a new identification method of material parameters of elastoplastic damage constitutive model under large strains. A relationship relating the intrinsic and extrinsic parameters of a reference material is built and transformed in equivalence relation. Extrinsic parameters concern the shape of their experimental tensile force/elongation curve, however, intrinsic parameters deal with Swift hardening law coupled with an isotropic damage variable. The relationship is carried out from a statistical characterization of a material reference (standard-steel E24). It based on multiple linear regression of a data set obtained according to a full factor design of numerical simulations of mechanical tensile tests. All materials satisfying this equivalence relation belong to the same equivalence class. This is motivated by observing that gathered materials must behave somewhat like the reference material. The material parameters can be immediately identified by only one task by running the found relationship. The current method facilitates the identification procedure and offers a substantial savings in CPU time. However it just needs only one simulation for the identification of similar behavior instead of the few hundred required when using other methods.
基金This work was funded by the Natural Science Foundation of China(No.51678480)Ministry of Education Cooperative Education Project(201802308007)+3 种基金Innovation Capability Support Program of Shaanxi(2020PT-038)Henan Province Key Scientific Research Projects of Colleges and Universities(19A560016)Henan Province Key Projects of Science and Technology(192102310277,182102310834)Scientific Research Projects of Shaanxi Education Department(16JK1244).
文摘To improve the resource utilization of recycled aggregate concrete(RAC)and make use of the unique pozzolanic activation characteristics of iron ore tailing(IOT),the constitutive curves of tailing recycled concrete(TRC)before and after carbonization were analyzed theoretically,experimentally and microscopically.Firstly,according to the experimental data,the damage constitutive and related damage parameters of TRC were theoretically established by Weibull probability distribution function.Secondly,the comprehensive damage parameter b under different working conditions was studied.Finally,the damage mechanism was formed by EDS and SEM.The results showed that the damage constitutive model based on Weibull probability distribution function was in good agreement with the experimental results.Under each carbonization period,the b first decreased and then rose with the increase of tailings content.When its content was 30%,the b values of TRC were minimized,which were 22.14%,20.99%,25.39%lower than those of NAC,and 41.09%,34.89%,35.44%lower than those of RAC,indicating that IOT had a relatively good optimization effect on the constitutive curve of RAC.The microscopic analysis results also proved that the IOT addition with a proper amount would improve the matrix structure of RAC and increased its compactness,but when the content was higher,it would also cause harmful cracks in its matrix structure and reduced its density.Therefore,the optimal tailing content was about 30%.This paper provided a new method for damage constitutive calculation and analysis of TRC before and after carbonization.
基金National Natural Science Foundation of China (10572140,10721202)
文摘The deformation work rate can be expressed by the time rate of pair functional potentials which describe the energy of materi- als in terms of atomic bonds and atom embedding interactions. According to Cauchy-Born rule, the relations between the micro- scopic deformations of atomic bonds and electron gas and macroscopic deformation are established. Further, atomic bonds are grouped according to their directions, and atomic bonds in the same direction are simplified as a spring-bundle component. Atom embedding interactions in unit reference volume are simplified as a cubage component. Consequently, a material model com- posed of spring-bundle components and a cubage component is established. Since the essence of damage is the decrease and loss of atomic bonding forces, the damage effect can be reflected by the response functions of these two kinds of components. For- mulating the mechanical responses of two kinds of components, the corresponding elasto-damage constitutive equations are de- rived. Considering that slip is the main plastic deformation mechanism of polycrystalline metals, the slip systems of crystal are extended to polycrystalline, and the slip components are proposed to describe the plastic deformation. Based on the decomposition of deformation gradient and combining the plastic response with the elasto-damage one, the elasto-plastic damage constitutive equations are derived. As a result, a material model iormulated with spring-bundle components, a cubage component and slip components is established. Different from phenomenological constitutive theories, the mechanical property of materials depends on the property of components rather than that directly obtained on the representative volume element. The effect of finite deformation is taken into account in this model. Parameter calibration procedure and the basic characteristics of this model are discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.51109029,51178081,51138001 and 51009020)the China Postdoctoral Science Foundation(No.20110491535)the State Key Development Program for Basic Research of China (No.2013CB035905)
文摘The paper is to design and construct a coupled elasto-plasticity damage constitutive model for concrete.Based on the energy dissipation principle,the Hsieh-Ting-Chen four-parameter yield function is used.The model can reflect different strength characteristics of concrete in tension and compression,and reduce the limitation and lacuna of the traditional damage constitutive models for concrete.Furthermore,numerical test for concrete stress-strain relation under uniaxial tension and compression is given.Moreover,the damage process of concrete gravity dam is calculated and analyzed in seismic load.Compared with other damage constitutive models,the proposed model contains only one unknown parameter and the other parameters can be found in the Hsieh-Ting-Chen four-parameter yield function.The same damage evolution law,which is used for tension and compression,is good for determining stress-strain constitutive and damage characteristics in complex stress state.This coupled damage constitutive models can be applied in analyzing damage of concrete gravity dam and arch dam.
基金supported by funds from the National Natural Science Foundation of China (Nos. 51374013, 51174005 and 51134012)the Huo Yingdong Funds for Young Teachers to Conduct Researches on Basic Sciences (No. 121050)+1 种基金the academic research activities subsidies for academic and technical leaders and backup candidate in Anhui provincethe funds for the Doctoral Program of Higher Education (No. 20133415110006)
文摘Using the Splitting Hopkinson Pressure Bar (SHPB) experimental system, investigations were made into the dynamic mechanical performances of underground soft rocks. The experiments proved that the measured stress-strain curves display the characteristics of plastic deformation. By making use of a revised overstress constitutive formula for the stress model and by taking into account that the strain rate and strain are a function of I - E(t)/Eo, a revised overstress constitutive formula for the stress model was simplified by applying dimensional analysis and consequently, a simplified overstress formula was obtained for the stress model. Then, by taking into consideration the effects of damage under a dynamic load on the dynamic loading strength of the rock, the continuous damage theory and the statistical strength theory were introduced into the development of the simplified overstress constitutive formula for the stress model. Hence, a damage-based constitutive formula for an overstress model, which can be appropriately applied to the analysis of full dynamic stress-strain curves, was developed. By using the simplified damage-based constitutive formula for an overstress model, the actually measured curves are fitted, indicating that the fitting curves and those actually measured are in good agreement.
基金Projects(2013BAB02B05,2012BAB08B01)supported by the National Science and Technology Support Program of ChinaProject(2013JSJJ029)supported by the Teacher Foundation of Central South University,ChinaProject(51074177)supported by the Joint Funding of National Natural Science Foundation and Shanghai Baosteel Group Corporation,China
文摘In order to study the failure mechanism of backfill and the reasonable matches between backfill and rock mass, and to achieve the object of safe and efficient mining in metal mine, four types of backfills were tested under uniaxial compression loading, with cement?tailing ratios of 0.250:1, 0.125:1, 0.100:1 and 0.083:1, respectively. With the help of the stress?strain curves, the deformation and failure characteristics of different backfills with differing cement?tailing ratios were analyzed. Based on the experimental results, the damage constitutive equations of cemented backfills with four cement?tailing ratios were proposed on the basis of damage mechanics. Moreover, comparative analysis of constitutive model and experimental results were made to verify the reliability of the damage model. In addition, an energy model using catastrophe theory to obtain the instability criteria of system was established to study the interaction between backfill and rock mass, and then the system instability criterion was deduced. The results show that there are different damage characteristics for different backfills, backfills with lower cement?tailing ratio tend to have a lower damage value when stress reaches peak value, and damage more rapidly and more obviously in failure process after peak value of stress; the stiffness and elastic modulus of rock mass with lower strength are more likely to lead to system instability. The results of this work provide a scientific basis for the rational strength design of backfill mine.
基金Project supported by the National Natural Science Foundation of China (No.10372115)
文摘Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soil and the mechanics of damage. Undisturbed expansive soil was considered as a compound of non-damaged part and damaged part. The behavior of the non-damaged part was described using non-linear constitutive model of unsaturated soil. The property of the damaged part was described using a damage evolution equation and two yield surfaces, i.e., loading yield (LY) and shear yield (SY). Furthermore, a consolidation model for unsaturated undisturbed expansive soil was established and a FEM program named UESEPDC was designed. Numerical analysis on solid-liquid-gas tri-phases and multi-field couple problem was conducted for four stages and fields of stress, displacement, pore water pressure, pore air pressure, water content, suction, and the damage region as well as plastic region in an expansive soil slope were obtained.
基金Chongqing Yudong Freeway Engineering Co.Ltd. (SJ-43-0106191)Chongqing Traffic Committee ([2002]23-3#) and Henan Province Preeminent Youth Foundation (0310053100).
文摘a damage constitutive model comprising two dynamite sticks is established and handled with the transient dynamics finite element computer program PRONTO-3D to study rock damage and fragmentation during blasting. Simulation tests find that tensile stress by detonation gives rise to tensile bulk strain and consequently damage in the material. Maximum bulk strain is observed in simultaneous detonations of the two dynamite sticks. It is demonstrated that the proposed method is applicable to studying the process of rock damage by blasting as well as its affecting factors.
基金Projects(51878190,51779031,51678170)supported by the National Natural Science Foundation of China。
文摘When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case.
基金financially supported by the“National Natural Science Foundation of China”[Grant No.52105106]the“China National Postdoctoral Program for Innovative Talents”[Grant No.BX2021126]+2 种基金the“Jiangsu Province Natural Science Foundation”[Grant No.BK20210342]the“Jiangsu Planned Projects for Postdoctoral Research Funds”[Grant No.2021K008A]the“Nanjing Municipal Human Resources and Social Security Bureau”[Grant No.MCA21121]。
文摘With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electromagnetic braking technology to recoil mechanism.In this paper,prototype tests of a certain artillery were carried out to verify the feasibility of the electromagnetic brake(EMB)and obtain the electromagnetic braking force.Due to the brittleness of Nd Fe B,in order to eliminate the worry about the safety of EMB,SHPB experiments of Nd Fe B were carried out.Then,based on the assumption of uniform crack distribution,the law of crack propagation and damage accumulation was described theoretically,and the damage constitutive model suitable for brittle materials was proposed by combining the Zhu-Wang-Tang(ZWT)equation.Finally,the numerical simulation model of the artillery prototype was established and through calculation,the dynamic mechanical characteristics of Nd Fe B in the prototype were analyzed.The calculation results show that the strength of Nd Fe B can meet the requirements of the use in the working process.From the perspective of damage factor,the damage value of the permanent magnet on the far right is larger,and the damage value of the inner ring gradually decreases to the outer ring.
基金the Natural Key Research and Development Program of China(Grant No.2017YFC0405103).
文摘Numerical simulation is known as an effective method for mechanical properties during frozen soil excavation.In order to reveal the development of cutting force,effective stress and cutting fragments in frozen silt during the cutting process,we introduce an explicit finite element program LS-DYNA to establish a two-dimensional numerical model of the frozen soil cut.We also use the Holmquist-Johnson-Cook(HJC)damage constitutive model for simulating the variation of soil mechanical properties according to the strong dependence between the cutting tool and frozen silt during the process with different cutting depths,angles and velocities.Meanwhile,a series of experimental results are acquired of frozen silt cutting to prove the application of the HJC model during simulation of cutting force variations.The result shows that the cutting force and fragment size are strongly influenced by cutting depths and cutting velocities increased,and the maximum effective stress at points where the tool contacts frozen soil during the cutting process.In addition,when the cutting angle is 52°,the cutting force is the smallest,and the cutting angle is optimum.Thus,the prediction of frozen soil mechanical properties on the cutting process by this model is conducive to selecting machinery equipment in the field.
基金supported by the National Basic Research Program of China("973"Project)(Grant Nos.2013CB036202,2013CB036200)the National Natural Science Foundation of China(Grant No.51008254)+3 种基金the Funds from the Key Laboratory for Precision&Non-traditional Machining of the Ministry of Education,Dalian University of Technology(Grant No.JMTZ201002)the Fundamental Research Funds for the Central Universities(Grant No.2682013CX029)the Funds from the China Scholarship Councilthe 2013 Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University
文摘The damage evolution and dynamic performance of a cement asphalt(CA)mortar layer of slab track subjected to vehicle dynamic load is investigated in this paper.Initially,a statistical damage constitutive model for the CA mortar layer is developed using continuous damage mechanics and probability theory.In this model,the strength of the CA mortar elements is treated as a random variable,which follows the Weibull distribution.The inclusion of strain rate dependence affords considering its influence on the damage development and the transition between viscosity and elasticity.Comparisons with experimental data support the reliability of the model.A three-dimensional finite element(FE)model of a slab track is then created with the commercial software ABAQUS,where the devised model for the CA mortar is implemented as a user-defined material subroutine.Finally,a vertical vehicle model is coupled with the FE model of the slab track,through the wheel-rail contact forces,based on the nonlinear Hertzian contact theory.The evolution of the damage and of the dynamic performance of the CA mortar layer with various initial damage is investigated under the train and track interaction.The analysis indicates that the proposed model is capable of predicting the damage evolution of the CA mortar layer exposed to vehicle dynamic load.The dynamic compressive strain,the strain rate,and the induced damage increase significantly with an increase in the initial damage,whereas the dynamic compressive stress exhibits a sharp decrease with the increasing initial damage.Also,it is found that the strain rate dependence significantly influences the damage evolution and the dynamic behavior of the CA mortar layer.
基金supported by the National Natural Science Foundation of China(Nos.10902025 and 11072064)the Scientific Research Foundation of GuangXi University(No.XBZ100713)the Key Project of GuangXi Science and Technology Lab Center(No.LGZX201101)
文摘Based on the thermodynamic theory, an orthotropic damage constitutive model was developed to describe the nonlinear mechanical behavior of C/SiC composites. The different nonlinear kinematic and isotropic hardening functions were adopted to describe accurately the damage evolution processes. The damage variables were defined with the damaged modulus and the initial undamaged modulus on energy equivalence principle. The initial orthotropy and damage coupling were presented in the damage yield function. Tensile and in-plane shear loading and unloading tests were performed, and a good agreement between the model and the experimental results was achieved.
基金funded by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_0613)National Natural Science Foundation of China(Grant Nos.41831278,51878249).
文摘Geological hazards caused by high-temperature rocks cooling down after encountering water are closely related to underground mining and tunneling projects.To fully understand the impact of temperature changes on the mechanical properties of rocks,yellow rust granite samples were subjected to heating-natural cooling and heating-water cooling cycles to experimentally study the effects of these processes on the mechanical properties of the samples.The mechanism of the heating-cooling process on the macromechanical properties of the rock was discussed.Based on the Drucker-Prager criterion and Weibull distribution function,a damage variable correction factor was introduced to reflect the post-peak strain softening characteristics,and a thermo-mechanical coupled damage constitutive model of the granite was established.The results showed that in the natural cooling mode,the mechanical properties deteriorate significantly when the temperature exceeded 600C,and the failure mode changed from brittle failure to ductile failure.In the water cooling mode,the peak strength and deformation modulus increased at temperatures below 400C with an increase in the cycle number,while at 600C,the peak strength and elastic modulus notably decreased.The peak strain increased with the increase of the cycle number and temperature at all temperatures,and the failure mode of the granite tended to change from tensile failure mode to shear failure mode.The experimental results were used to validate the damage constitutive model.The shape parameter r and scale parameter S in the Weibull distribution function of the model were used as indicators to reflect the brittleness degree and peak strength.This study helps to understand the behavior of rocks in hightemperature environments,in order to prevent and mitigate potential geological hazards.