期刊文献+
共找到7,023篇文章
< 1 2 250 >
每页显示 20 50 100
Change in Grain-Size Composition of Lignite under Cyclic Freezing-Thawing and Wetting-Drying
1
作者 Natalia S. Batugina Vladislav I. Fedorov 《Natural Resources》 2024年第1期17-27,共11页
The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to... The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying. 展开更多
关键词 LIGNITE freezing-thawing Cycle Wetting-Drying Cycle Grain Size Composition Dust Coal Storage Loss Quality
下载PDF
Coupling of the Calculated Freezing and Thawing Front Parameterization in the Earth System Model CAS-ESM 被引量:3
2
作者 Ruichao LI Jinbo XIE +5 位作者 Zhenghui XIE Binghao JIA Junqiang GAO Peihua QIN Longhuan WANG Si CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第9期1671-1688,共18页
The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydro... The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process. 展开更多
关键词 frozen ground freezing and thawing fronts maximum freezing depth active layer thickness earth system model CAS-ESM
下载PDF
Effects of freeze-thaw cycles on sandstone in sunny and shady slopes
3
作者 Dian Xiao Xiaoyan Zhao +3 位作者 Corrado Fidelibus Roberto Tomás Qiu Lu Hongwei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2503-2515,共13页
A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering beha... A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks.In this paper,an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented.To this aim,non-destructive and repeatable testing techniques including weight,ultrasonic waves,and nuclear magnetic resonance methods on standard specimens were performed.For the sunny slope specimens,accompanied by the enlargement of small pores,100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%,but a consistent rise of 0.18%in mass loss,34%in porosity,67%in pore geometrical mean radius,and a remarkable 14.5-fold increase in permeability.However,slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling,which can be attributed to superficial granular disaggregation and pore throat obstruction.Thermal shocks enhance rock weathering on sunny slopes during FT cycles,while FT weathering on shady slopes is restricted to the small pores and the superficial cover.These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes.The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions. 展开更多
关键词 Sunny-shady slope Freeze and thaw Pore structure Tight rocks Talus slope Cold regions
下载PDF
Response of Freezing/Thawing Indexes to the Wetting Trend under Warming Climate Conditions over the Qinghai–Tibetan Plateau during 1961–2010:A Numerical Simulation 被引量:2
4
作者 Xuewei FANG Zhi LI +5 位作者 Chen CHENG Klaus FRAEDRICH Anqi WANG Yihui CHEN Yige XU Shihua LYU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第2期211-222,共12页
Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming ... Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG)has long been recognized.Still,a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future.This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5.Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones,with significant correlation coefficients of 0.60 and 0.48,respectively.Precipitation increased continually at the rate of 6.16 mm decade–1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer.However,diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG.The relationship between the ground thawing index and precipitation was significantly negatively correlated(−0.75).The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation. 展开更多
关键词 freezing/thawing indexes numerical modeling wetting process frozen ground Qinghai–Tibetan Plateau
下载PDF
Changes in freezing and thawing indices over the source region of the Yellow River from 1980 to 2014 被引量:6
5
作者 Rui Wang Qingke Zhu Hao Ma 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第1期257-268,共12页
Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawin... Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawing indices and their relationship with air indices is limited.Based on daily air and ground-surface temperatures collected from 11 meteorological stations in the source region of the Yellow River,the freezing and thawing indices were calculated,and their spatial distribution and trends were analyzed.The air-freezing index(AFI),air-thawing index(ATI),ground surface-freezing index(GFI),ground surface-thawing index(GTI),air thawing-freezing index ratio(Na)and surface ground thawing-freezing index ratio(Ng)were 1554.64,1153.93,1.55,2484.85,850.57℃-days and 3.44,respectively.Altitude affected the spatial distribution of the freezing and thawing indices.As the altitude increased,the freezing indices gradually increased,and the thawing indices and thawing-freezing index ratio decreased.From 1980 to 2014,the AFI and GFI decreased at rates of 8.61 and 11.06℃-days a^(-1),the ATI and GTI increased at 9.65 and 14.53℃-days a^(-1),and Na and Ng significantly increased at 0.21 and 0.79 decade^(-1).Changes in the freezing and thawing indices were associated with increases in the air and ground-surface temperatures.The rates of change of the ground surface freezing and thawing indices were faster than the air ones because the rate of increase of the groundsurface temperature was faster than that of the air and the difference between the ground surface and air increased.The change point of the time series of freezing and thawing indices occurred in 2000–2001.After 2000–2001,the AFI and GFI were lower than before the change point,and the changing trend was lower.The ATI,GTI,Na and Ng during 2001–2014 were higher,with faster rates than before.In addition,the annual thawing indices composed a greater proportion of the mean annual air temperature and mean annual ground surface temperature than the annual freezing indices.This study provides the necessary basis for research on and prediction of permafrost changes,especially changes in the depth of the active permafrost layer,climate change,and possible evolution of the ecological environment over the source region of the Yellow River on the Qinghai-Tibet Plateau. 展开更多
关键词 CLIMATE change freezing and thawing indices PERMAFROST The source region of the YELLOW RIVER
下载PDF
Mechanics Behavior of Ultra High Toughness Cementitious Composites after Freezing and Thawing 被引量:9
6
作者 徐世烺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期509-514,共6页
Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bendin... Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bending tests had been applied after different freezing-thawing cycles(0,50,100,150,200 and 300 cycles,respectively).The results showed that residual flexural strength of UHTCC after 300 freezing-thawing cycles was 10.62 MPa(70% of no freezing thawing ones),while 1.58 MPa(17% of no freezing thawing ones) for SFRC.Flexural toughness of UHTCC decreased by 17%,while 70% for SFRC comparatively.It has been demonstrated experimentally that UHTCC without any air-entraining agent could resist freezing-thawing and retain its high toughness characteristic in cold environment.Consequently,UHTCC could be put into practice for new-built or retrofit of infrastructures in cold regions. 展开更多
关键词 ultra high toughness cementitious composites cyclic freezing and thawing flexural strength multiple cracking flexural toughness
下载PDF
Alternate freezing and thawing enhanced the sediment and nutrient runoff loss in the restored soil of the alpine mining area 被引量:1
7
作者 LI Fa-Yong LUO Ren-jie +6 位作者 YOU Yong-jun HU Xue-fei QIAN Xiao-yan ZHANG Peng-yan WANG Shan LI Guo-yu KAMEL Mohamed Eltohamy 《Journal of Mountain Science》 SCIE CSCD 2022年第6期1823-1837,共15页
This study highlights the influence of freezing-thawing processes on soil erosion in an alpine mine restoration area. Accordingly, a series of simulation experiments were conducted to investigate runoff, sediment, and... This study highlights the influence of freezing-thawing processes on soil erosion in an alpine mine restoration area. Accordingly, a series of simulation experiments were conducted to investigate runoff, sediment, and nutrient losses, and potential influencing factors under freeze-thaw(FT) conditions. Three FT treatments(i.e., 0, 3, and 5 FT cycles), and two soil moisture contents(SMCs;i.e., 10% and 20% SMC on a gravimetric basis) were assessed. The runoff, sediment yield, ammonia nitrogen(AN), nitrate nitrogen(NN), total phosphorus(TP), and dissolved phosphorus(DP) losses from runoff were characterized under different rainfall durations. The fitting results indicated that the runoff rate and sediment rate, AN, NN, TP, and DP concentrations in runoff could be described by exponential functions. FT action increased the total runoff volume and sediment yield by 14.6%–26.0% and 8.8%–35.2%, respectively. The runoff rate and sediment rate increased rapidly with the increment of FT cycles before stabilizing. At 20% SMC, the total runoff volume and sediment yield were significantly higher than those at 10% SMC. The loss curves of AN and NN concentrations varied due to differences in their chemical properties. FT action and high SMC promoted AN and NN losses, whereas the FT cycles had little effect. FT action increased TP and DP losses by 60.2%–220.1% and 48.4%–129.8%, respectively, compared to cases with no FT action;the highest TP and DP losses were recorded at 20% SMC. This study provides a deep understanding of freezing-thawing mechanisms in the soils of alpine mine restoration areas and the influencing factors of these mechanisms on soil erosion, thereby supporting the development of erosion prevention and control measures in alpine mine restoration areas. 展开更多
关键词 freezing and thawing Mine restoration area nitrogen loss Phosphorus loss Rainfall simulation Soil moisture content
下载PDF
Response Relationship between the Seasonal Freezing-Thawing Process of Soil and Spatial Factor Changes in the Dayekou Basin of the Qilian Mountains 被引量:2
8
作者 Yun Niu Jinling An 《Open Journal of Ecology》 2018年第8期417-431,共15页
Objective: In this study, the influence and response relationship between the seasonal freezing-thawing process of soil and the spatial factor changes in the management and utilization of water resource processes were... Objective: In this study, the influence and response relationship between the seasonal freezing-thawing process of soil and the spatial factor changes in the management and utilization of water resource processes were explored. Methods: The monitoring equipment in this study was arranged at different altitudes, gradients, and slope directions, such as the typical forest sample area in the Dayekou Basin of the Qilian Mountains. The spatial variation characteristics of the seasonal freezing-thawing process of the soil were analyzed, and a regression model was established. Results: 1) The results of this study determined that the rate of the soil’s freezing increased with the altitude in a trend of volatility. However, the rate of the thawing of the frozen soil was found to have an opposite trend. The variation degree of the freezing-thawing process increased with the altitude in a trend of volatility. The end time of the approximate soil freezing with altitude increased in a volatility trend ahead of schedule. However, the opposite was observed in the thawing rate of the frozen soil;2) The rate of the soil’s freezing under the mosses of the spruce forest at an altitude of 3028 m was found to be the lowest. However, in the sub-alpine scrub forest at an altitude of 3300 m, a maximum in the spatial ordering was observed, with an average of 1.9 cm·d-1. The thawing rate of the frozen soil in scrub-spruce forest at an altitude of 3300 m was found to be minimal. However, in the sunny slope grassland at an altitude of 2946 m, a maximum in the spatial ordering was observed, with an average of 1.5 cm·d-1. In the spatial ordering of the variation degree of the process of freezing-thawing with an average of 1.2, the scrub-grassland at an altitude of 2518 m was found to be the lowest, and the scrub-spruce forest at an altitude of 3195 m was also low;3) The soil freezing began on approximately October 20th, and the rate of soil freezing gradually became reduced. The arrival time of the frozen soil of up to 150 cm in depth in sub-alpine scrub forest was first observed at an altitude of 3028 m. However, the scrub-spruce forest at an altitude of 3100 m did not become frozen until approximately January 12th on average. Then, the thawing rate of the frozen soil increased gradually. The end time of the thawing was earliest observed in the sunny slope grassland at an altitude of 2946 m. However, the scrub-spruce forest at an altitude of 3100 m was found to be the last to thaw, and averaged approximately July 27th. The average durations of the freezing and thawing of the soil were 77 and 121 days, respectively, and the average duration of the entire process of freezing-thawing was 199 days;4) This study’s established regression models of the duration time of frozen soil’s thaw, and the rate of frozen soil’s thaw, all passed the R test of goodness of fit, F test of variance, and t test. Conclusions: The characteristics of the seasonal freezing-thawing process of the soil with the spatial changes were seasonal. However, the characteristics under the different spatial factor influences were not the same. 展开更多
关键词 freezing-thawing SPATIAL FACtoR Seasonal Frozen SOIL Dayekou BASIN of the QILIAN Mountains
下载PDF
Factors influencing the outcome of embryo freezing and thawing program
9
作者 叶英辉 金帆 +1 位作者 徐晨明 邢兰凤 《Journal of Zhejiang University Science》 CSCD 2002年第4期493-496,共4页
Objective: To investigate the factors that might influence the success of an embryo freezing and thawing program. Method: The relationship between the pregnancy rate in 73 cycles of embryo freezing and thawing progr... Objective: To investigate the factors that might influence the success of an embryo freezing and thawing program. Method: The relationship between the pregnancy rate in 73 cycles of embryo freezing and thawing program and the following factors was analyzed: maternal age, E 2 level at the time of HCG trigger, embryo storage time, number of thawed embryos transferred, presence of sponsoring embryos and intact embryos. And the survival rate of thawed embryos with different morphology, cell stage and storage time was evaluated. Result: Transfer with three or more than three thawed embryos resulted in pregnancy rates of 38.5% and 35.7%, respectively, compared with 5.3% for transfer of fewer than three embryos. The presence of sponsoring embryos and intact embryos significantly increases pregnancy rate in embryo freezing and thawing program. No other factor examined had any effect on pregnancy outcome. The survival rate of good morphology embryos was higher than poor ones, but was not influenced by cell stage and storage time. Conclusion: Embryo morphology before freezing, number of thawed embryos transferred and the presence of intact embryos are important to the outcome of embryo freezing and thawing program. 展开更多
关键词 Embryo freezing and thawing Embryo morphology Pregnancy rate Embryo survival rate
下载PDF
The Impact of Soil Freezing/Thawing Processes on Water and Energy Balances 被引量:5
10
作者 张霞 孙菽芬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期169-177,共9页
A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liqui... A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liquid water content and temperature using soil model with and without the inclusion of freezing and thawing processes are evaluated against observations at the Rosemount field station. By comparing the simulated water and heat fluxes of the two cases, the role of phase change processes in the water and energy balances is analyzed. Soil freezing induces upward water flow towards the freezing front and increases soil water content in the upper soil layer. In particular, soil ice obviously prevents and delays the infiltration during rain at Rosemount. In addition, soil freezingthawing processes alter the partitioning of surface energy fluxes and lead the soil to release more sensible heat into the atmosphere during freezing periods. 展开更多
关键词 frozen soil water and energy balances freezing/thawing processes surface flux
下载PDF
Effect on anaerobic digestion performance of corn stover by freezing–thawing with ammonia pretreatment 被引量:3
11
作者 Hairong Yuan Yanyan Lan +3 位作者 Jialin Zhu Akiber Chufo Wachemo Xiujin Li Liang Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第1期200-207,共8页
In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness o... In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application. 展开更多
关键词 freezingthawing AMMONIA PRETREATMENT Anaerobic DIGESTION Corn StoVER
下载PDF
Study of polluted soil remediation based on freezing and thawing cycles 被引量:3
12
作者 DaHu Rui BaiYang Song +1 位作者 Yuzuru Ito Li Wang 《Research in Cold and Arid Regions》 CSCD 2014年第4期322-330,共9页
It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant e... It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively. 展开更多
关键词 soil pollution REMEDIATION washing technology freezing process thawing process moisture migration
下载PDF
Stress-Strain Relationship and Failure Criterion for Concrete after Freezing and Thawing Cycles 被引量:5
13
作者 罗昕 卫军 《Journal of Southwest Jiaotong University(English Edition)》 2006年第3期265-271,共7页
The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of intern... The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of internal state of material were introduced into the formula presented by Desayi and Krishman and the weighted twin-shear strength theory. As a nondestructive examination method in common use, the ultrasonic technique was adopted in the study, and the ultrasonic velocity was used to establish the damage variable. After that, the failure criterion and one-dimensional stress-strain relationship for deteriorated concrete were obtained. Eventually, tests were carried out to study the evolution laws on the damage. The results show that the more freezing and thawing cycles are, the more apparently the failure surface shrinks. Meanwhile, the comparison between theoretical data and experimental data verifies tile rationality of tile damage-based one-dimensional stress-strain relationship proposed. 展开更多
关键词 CONCRETE DAMAGE Stress-strain relationship Strength theory freezing and thawing cycles Supersonic velocity
下载PDF
Comparison of the water change characteristics between the formation and dissociation of methane hydrate and the freezing and thawing of ice in sand 被引量:2
14
作者 Peng Zhang Qingbai Wu Yingmei Wang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第2期205-210,共6页
Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water conten... Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation. 展开更多
关键词 methane hydrate ICE formation and dissociation process freezing and thawing process water change
下载PDF
Influences of Seasonal Freezing and Thawing on Soil Water-stable Aggregates in Orchard in High Cold Region,Northeast China 被引量:3
15
作者 LIANG Yunjiang DENG Xu +4 位作者 SONG Tao CHEN Guoshuang WANG Yuemei ZHANG Qing LU Xinrui 《Chinese Geographical Science》 SCIE CSCD 2021年第2期234-247,共14页
Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of ... Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of SFT on aggregate stability in orchards during winter and spring is crucial to develop appropriate management strategies that can effectively alleviate the degradation of soil quality to ensure sustainable development of orchard ecosystems.To determine the mechanism of degradation in orchard soil quality,the effects of SFT on the stability of water-stable aggregates were examined in apple-pear orchards(Pyrus ussuriensis var.ovoidea)of four different ages(11,25,40,and 63 yr)on 0 to 5%slopes before freezing and after thawing from October 2015 to June 2016 in Longjing City,Yanbian Prefecture,Northeast China,involving a comparison of planted versus adjacent uncultivated lands(control).Soil samples were collected to investigate water-stable aggregate stability in three incremental soil layers(0–20,20–40 and 40–60 cm).In the same samples,iron oxide,organic matter,and clay contents of the soil were also determined.Results showed that the destructive influences of SFT on water-stable aggregates were more pronounced with the increased orchards ages,and SFT exerted severe effects on water-stable aggregates of older orchards(40 and 63 yr)than juvenile orchards.Undergoing SFT,the soil instability index and the percentage of aggregate destruction increased by mean 0.15 mm and 1.86%,the degree of aggregation decreased by mean 1.32%,and the erosion resistance weakened,which consequently led to aggregate stability decreased.In addition,soil free,amorphous,and crystalline iron oxide as well as soil organic matter and clay contents are all important factors affecting the stability of water-stable aggregates,and their changes in their contents were consistent with those in the stability of water-stable aggregates.The results of this study suggest that long-term planting fruit trees can exacerbate the damaging effects of SFT on aggregate stability and further soil erosion increases and nutrient losses in an orchard,which hider sustainable use of soil and the productivity orchards. 展开更多
关键词 water-stable aggregates orchard age apple-pear orchard soil seasonal freezing and thawing soil degradation high cold region
下载PDF
How freezing and thawing processes affect black-soil aggregate stability in northeastern China 被引量:7
16
作者 FengWang XiaoZeng Han +1 位作者 LiangHao Li KeQiang Zhang 《Research in Cold and Arid Regions》 2010年第1期67-72,共6页
Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size ... Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size groups, different water contents, various freeze-thaw cycles, and various freezing temperatures. The results showed that, when at suitable water content, aggregate stability was enhanced, aggregate sta-bility will be disrupted when moisture content is too high or too low, especially higher water content. Temperature also had a significant ef-fect, but moisture content determined the suitable freezing temperatures for a given soil. Water-stable aggregate (WSA〉0.5), the total aggre-gate content, and mean weight diameter decreasing with the freeze-thaw cycles increase, reached to 5 percent significance level. The reason for crumbing aggregates is the water and air conflict, thus raising the hypothesis that water content affects the aggregate stability in the process of freezing and thawing. 展开更多
关键词 freezing and thawing processes black soil water-stable aggregates mean weight diameter
下载PDF
A model of unfrozen water content in rock during freezing and thawing with experimental validation by nuclear magnetic resonance 被引量:2
17
作者 Zhouzhou Su Xianjun Tan +2 位作者 Weizhong Chen Hailiang Jia Fei Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1545-1555,共11页
The unfrozen water content of rock during freezing and thawing has an important influence on its physical and mechanical properties.This study presented a model for calculating the unfrozen water content of rock durin... The unfrozen water content of rock during freezing and thawing has an important influence on its physical and mechanical properties.This study presented a model for calculating the unfrozen water content of rock during freezing and thawing process,considering the influence of unfrozen water film and rock pore structure,which can reflect the hysteresis and super-cooling effects.The pore size distribution cu rves of red sandsto ne and its unfrozen water conte nt under different temperatures during the freezing and thawing process were measured using nuclear magnetic resonance(NMR) to validate the proposed model.Comparison between the experimental and calculated results indicated that the theoretical model accu rately reflected the water content change law of red sandstone during the freezing and thawing process.Furthermore,the influences of Hamaker constant and surface relaxation parameter on the model results were examined.The results showed that the appropriate magnitude order of Hamaker constant for the red sandstone was 10J to 10J;and when the relaxation parameter of the rock surface was within 25-30 μm/ms,the calculated unfrozen water content using the proposed model was consistent with the experimental value. 展开更多
关键词 freezing and thawing Unfrozen water content Super-cooling and hysteresis Nuclear magnetic resonance(NMR) Unfrozen water calculation model Red sandstone
下载PDF
Effects of Nitrogen Application on N_2O Flux from Fluvo-Aquic Soil Subject to Freezing-Thawing Process 被引量:3
18
作者 WANG Feng GAO Shang-bin +4 位作者 ZHANG Ke-qiang LI Hai-bo BAI Li-jing HUANG Zhi-ping MI Chang-hong 《Agricultural Sciences in China》 CAS CSCD 2010年第4期577-582,共6页
A lab-incubation experiment was conducted to investigate the effects of different forms of nitrogen application (ammonium, NH4+-N; nitrate, NO3--N; and amide-N, NH2-N) and different concentrations (40, 200 and 800... A lab-incubation experiment was conducted to investigate the effects of different forms of nitrogen application (ammonium, NH4+-N; nitrate, NO3--N; and amide-N, NH2-N) and different concentrations (40, 200 and 800 mg L-1) on N2O emission from the fluvo-aquic soil subjected to a freezing-thawing cycling. N2O emission sharply decreased at the start of soil freezing, and then showed a smooth line with soil freezing. In subject to soil thawing, N2O emission increased and reached a peak at the initial thawing stage. The average N2O emissions with addition of NH4+-N, NO3 -N and NH2-N are 119.01, 611.61 and 148. 22 ug m-2 h-1, respectively, at the concentration of 40 mg L-1; 205.28, 1 084.40 and 106.13 ug m2 h-1 at the concentration of 200 mg L-1; and 693.95, 1 820.02 and 49.74 ug m-2 h4 at the concentration of 800 mg L-1. The control is only 100.35 ug m-2 h-1. N2O emissions with addition of NH4+-N and NO3--N increased with increasing concentration, by ranging from 17.49 to 425.67% for NH4+-N, and from 563.38 to 1458.6% for NO3--N compared with control. There was a timelag for N2O emission to reach a steady state with an increase of concentration. In contrast, by adding NH2-N to soil, N2O emission decreased with increasing concentration. In sum, NH4+-N or NO3--N fertilizer incorporated in soil enhanced the cumulative N2O emission from the fluvo-aquic soil relative to amide-N. This study suggested that ammonium and nitrate concentration in overwintering water should be less than 200 and 40 mg L-1 in order to reduce N2O emissions from soil, regardless of amide-N. 展开更多
关键词 freezing-thawing process NH4+ -N NO3--N amide-N N2O flux
下载PDF
Potential methane and nitrous oxide production and respiration rates from penguin and seal colony tundra soils during freezing–thawing cycles under different water contents in coastal Antarctica 被引量:2
19
作者 LIU Yashu ZHANG Wanying +1 位作者 ZHU Renbin XU Hua 《Advances in Polar Science》 2017年第1期61-74,共14页
In coastal Antarctica, frequent freezing-thawing cycles (FTCs) and changes to the hydrological conditions may affect methane (CH4) and nitrous oxide (N2O) production and respiration rates in tundra soils, which ... In coastal Antarctica, frequent freezing-thawing cycles (FTCs) and changes to the hydrological conditions may affect methane (CH4) and nitrous oxide (N2O) production and respiration rates in tundra soils, which are difficult to observe in situ. Tundra soils including omithogenic tundra soil (OAS), seal colony soil (SCS) and emperor penguin colony soil (EPS) were collected. In laboratory, we investigated the effects of FTCs and water addition on potential N2O and CH4 production and respiration rates in the soils. The CH4 fluxes from OAS and SCS were much less than that from EPS. Meanwhile, the N2O fluxes from OAS and EPS were much less than that from SCS. The N2O production rates from all soils were extremely low during freezing, but rapidly increased following thawing. In all cases, FTC also induced considerably enhanced soil respiration, indicating that soil respiration response was sensitive to the FTCs. The highest cumulative rates of CH4, N2O and CO2 were 59.5 mg CH4-C·kg-1 in EPS, 6268.8μg N2O-N·kg-1 in SCS and 3522.1mg CO2-C·kg-1 in OAS. Soil water addition had no significant effects on CH4 production and respiration rates, but it could reduce N2O production in OAS and EPS, and it stimulated N2O production in SCS. Overall, CH4 and N2O production rates showed a trade-off relationship during the three FTCs. Our results indicated that FTCs greatly stimulated soil N2O and CO2 production, and water increase has an important effect on soil N2O production in coastal Antarctic tundra. 展开更多
关键词 ANTARCTICA CH4 N2O soil respiration freezing-thawing cycles TUNDRA
下载PDF
Advances in studies on concrete durability and countermeasures against freezing-thawing effects 被引量:1
20
作者 WuJian Yan FuJun Niu +2 位作者 XianJun Zhang Jing Luo GuoAn Yin 《Research in Cold and Arid Regions》 CSCD 2014年第4期398-408,共11页
This paper is a meta-analysis of recent domestic and foreign research on freezing-thawing effects on concrete durability. The main theories on the mechanisms of freeze-thaw damage to concrete are introduced: the hydr... This paper is a meta-analysis of recent domestic and foreign research on freezing-thawing effects on concrete durability. The main theories on the mechanisms of freeze-thaw damage to concrete are introduced: the hydrostatic pressure theory, the osmotic pressure theory, the critical water saturation degree theory, the dual mechanism theory, and the micro-ice-crystal lens model theory. The influence laws of freezing-thawing on the mechanical properties of concrete are summarized, and countermeasures to improve concrete durability in freezing-thawing circumstances are presented. This work provides valuable references for future engineering constructions in cold regions. 展开更多
关键词 concrete durability freezing-thawing effect mechanical properties COUNTERMEASURES cold region
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部