By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable ...By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable oil and gas accumulation series in the Tabei (northern Tarim uplift) uplift. There are different patterns of hydrocarbon accumulation on the northern and southern slopes of the Yingmaili low uplift. The north-south differentiation of oil reservoirs were caused by different lithologies of the residual carbonate strata and the key constraints on the development of the reservoir beds. The Mesozoic terrestrial organic matter in the Kuqa depression and the Palaeozoic marine organic matter in the Manjiaer sag of the Northern depression are the major hydrocarbon source rocks for the northern slope and southern slope respectively. The hydrocarbon accumulation on the northern and southern slopes is controlled by differences in maturity and thermal evolution history of these two kinds of organic matter. On the southern slope, the oil accumulation formed in the early stage was destroyed completely, and the period from the late Hercynian to the Himalayian is the most important time for hydrocarbon accumulation. However, the time of hydrocarbon accumulation on the northern slope began 5 Ma B.P. Carbonate inner buried anticlines reservoirs are present on the southern slope, while weathered crust and paleo-buried hill karst carbonate reservoirs are present on the northern slope. The northern and southern slopes had different controlling factors of hydrocarbon accumulation respectively. Fracture growth in the reservoir beds is the most important controlling factor on the southern slope; while hydrocarbon accumulation on the northern slope is controlled by weathered crust and cap rock.展开更多
Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects ...Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects of land use on the accumulation of heavy metals in soils, 148 soil samples were collected from four land use patterns including greenhouse field, uncovered vegetable field, maize field, and forest field in Siping area of Jilin Province, China, and Cr, Ni, Cu, As, Cd, Pb, and Zn contents of those samples were determined with ICP and ICP-Mass. The result showed that there was a rather large difference in effects of the accumulation of Cr, Ni, Cu, As, Cd, and Zn in soils under different land use patterns, except Pb. Based on the assessment which compared with background concentrations in soil, the higher accumulation of heavy metals was found in greenhouse and uncovered vegetable field, much less in maize field and forest field. The mean contents of heavy metals in soils from high to low were arranged in order of greenhouse field, uncovered vegetable field, maize field, and forest field. Cd and Cu had relatively serious accumulation in soils compared to Cr, Ni, As, and Zn. The mean content of Cd in greenhouse field was 0.467 mg kg-x,which exceeded the grade II of the Chinese Soil Quality Criterion GB15618-1995 (6.5 〈pH〈7.5) for Cd standard of 0.3 mg kg^-1, while it was 5.2 times of Cd standard in the forest fields. The mean contents ofCr, Ni, Cu, As, Pb, and Zn in soils under four land use patterns were lower than the grade II of the Chinese Soil Quality Criterion. Compared with the soil cultivated years, the agricultural chemical compounds and manures application, especially the quality and quantity of applied fertilizer was one of the main reasons for leading to different accumulation of heavy metals in soils under the studied land use patterns. The accumulation of heavy metals, such as Cr, Ni, Cu, As, Cd, and Zn in soils was significantly affected by land use patterns, among them the accumulation of heavy metals in greenhouse soils was higher than others. It is suggested that the application of chemical fertilizer, organic fertilizer, and pesticides with high contents of heavy metals should be avoided to prevent the accumulation of heavy metal and keep high quality soils for sustainable use.展开更多
Source-contacting gas, which is also called basin-center gas, deep basin gas, is the tight-sand gas accumulation contacting closely to its source rocks. Having different accumulation mechanisms from conventional gas r...Source-contacting gas, which is also called basin-center gas, deep basin gas, is the tight-sand gas accumulation contacting closely to its source rocks. Having different accumulation mechanisms from conventional gas reservoirs that are formed by replacement way, the typical source-contacting gas reservoirs are formed by piston-typed migration forward way. Source-contacting gas accumulations exhibit a series of distinctly mechanic characteristics. According to the valid combination of these characteristics, the estimation for the type of discovered gas reservoirs or distributions of source-contacting gas reservoirs can be forecasted. The source-contacting gas is special for having no edge water or bottom water for gas and complicated gas-water relationships, which emphasizes the intimate association of reservoir rocks with source rocks, which is called the root of the gas reservoir. There are many basins having the mechanic conditions for source-contacting gas accumulations in China, which can be divided into three regions. Most of the basins with favorable accumulation conditions are located mainly in the central and western China. According to the present data, basins having source-contacting gas accumulations in China can be divided into three types, accumulation conditions and configuration relationships are the best in type A basins and they are the larger basins in central China. Type B basins with plain accumulation conditions exist primarily in eastern China and also the basins in western China. Accumulation conditions and exploration futures are worse in type C basins, which refer mainly to the small basins in southern China and China Sea basins. Main source-contacting gas basins in China are thoroughly discussed in this paper and the distribution patterns of source-contacting gas in five huge basins are discussed and forecasted.展开更多
Baise basin is a semi-graben type , pan-shaped faulted basin of Early Tertiary , in which carbonate lacustrine deposits and elastic lacustrine deposits developed . The assemblages of Gilbert-type delta-lakes ,littoral...Baise basin is a semi-graben type , pan-shaped faulted basin of Early Tertiary , in which carbonate lacustrine deposits and elastic lacustrine deposits developed . The assemblages of Gilbert-type delta-lakes ,littoral ,shallow and deep water fades are recognized . Based on grain size , the clastic lacustrine deposit systems can be grouped in three kinds of depositional sequences of progressive deposition : (1)from coarse to fine , (2)from fine to coarse and (3) from fine to coarse and then to fine agan . This was controlled mainly by hydrodynamic factor of lake bottom type .Lake shore was an important place for coal accumulation and peatmoor development . It had long time for coal accumulation and there was a very little amount of minerals into the basin ,and the thick coal layer and high quality coal developed m the zone where initial lake bottom was plan-like and the surface stream flow was weak .Peat accumulation advanced from the margin to the center of basin .Carbonate lakes contained much water ,very high preponderant contenis of coagel ,low inert contents and no fusinite in the coal .展开更多
Purpose:The study aimed to describe youth time-use compositions,focusing on time spent in shorter and longer bouts of sedentary behavior and physical activity(PA),and to examine associations of these time-use composit...Purpose:The study aimed to describe youth time-use compositions,focusing on time spent in shorter and longer bouts of sedentary behavior and physical activity(PA),and to examine associations of these time-use compositions with cardiometabolic biomarkers.Methods:Accelerometer and cardiometabolic biomarker data from 2 Australian studies involving youths 7-13 years old were pooled(complete cases with accelerometry and adiposity marker data,n=782).A 9-component time-use composition was formed using compositional data analysis:time in shorter and longer bouts of sedentary behavior;time in shorter and longer bouts of light-,moderate-,or vigorous-intensity PA;and"other time"(i.e.,non-wear/sleep).Shorter and longer bouts of sedentary time were defined as<5 min and>5 min,respectively.Shorter bouts of light-,moderate-,and vigorous-intensity PA were defined as<1 min;longer bouts were defined as≥1 min.Regression models examined associations between overall time-use composition and cardiometabolic biomarkers.Then,associations were derived between ratios of longer activity patterns relative to shorter activity patterns,and of each intensity level relative to the other intensity levels and"other time",and cardiometabolic biomarkers.Results:Confounder-adjusted models showed that the overall time-use composition was associated with adiposity,blood pressure,lipids,and the summary score.Specifically,more time in longer bouts of light-intensity PA relative to shorter bouts of light-intensity PA was significantly associated with greater body mass index z-score(zBMI)(β=1.79;SE=0.68)and waist circumference(β=18.35,SE=4.78).When each activity intensity was considered relative to all higher intensities and"other time",more time in light-and vigorous-intensity PA,and less time in sedentary behavior and moderate-intensity PA,were associated with lower waist circumference.Conclusion:Accumulating PA,particularly light-intensity PA,in frequent short bursts may be more beneficial for limiting adiposity compared to accumulating the same amount of PA at these intensities in longer bouts.展开更多
In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main contr...In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main controlling factors and accumulation model of Chang 9 reservoir in this area can provide a basis for the production targets, and assist in formulating reasonable development technology policy. In this paper, to explore and summarize the hydrocarbon accumulation model, the Chang 9 reservoir were analyzed from the aspects of oil source, fracture, oil migration, structure, lithology and reservoir physical properties for the main controlling factors in this area. Organic geochemical and geological comprehensive analysis that the oil-source of the Chang 9 reservoir in the northwest of Ordos Basin is derived from Chang 7 hydrocarbon source rocks. The fractures provide a sound channel for the "vertical multi-point filling" of the oil source from Chang 7 to Chang 9. The crude oil migrates vertically from Chang 7 to Chang 9, then expands horizontally to form a reservoir. Structures play an important role in controlling the distribution of reservoirs, the control by sand in small layer and physical property is also obvious. This paper creatively establishes the reservoir accumulation model of Chang 9 in northwest of Ordos Basin, which is characterized by Vertical multi-point filling, horizontal expansion becomes oil pool. It reveals the genetic mechanism of the development of Chang 9 multi-reservoir in the study area, which provides guidance for exploration and evaluation deployment.展开更多
[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high...[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high-yield winter wheat cultivar Jimai 22 as the experimental material, field experiment was conducted during 2008- 2010. A total of 3 planting patterns were designed, uniform row, wide-narrow row and furrow. Under each planting pattern, total four irrigation patterns were designed, no irrigation (Wo), irrigation at jointing state (Wl), irrigation at jointing and anthesis stages (W2) and irrigation at jointing, anthesis and milking stages (W3), and the irri- gation amount per treatment was all 60 mm. [Result] Under the three planting pat- terns, with the increased irrigation amount, the total water consumption of the exper- imental field increased; the proportion of irrigation in the total water consumption in- creased, and that of soil water consumption in the total water consumption de- creased significantly. Compared with W0 treatment, various irrigation treatments sig- nificantly increased the post-anthesis dry matter accumulation in wheat plants; with the increased irrigation amount, the grain yield under the three planting patterns all increased, while the water use efficiency (WUE) decreased. Under the same irriga- tion conditions, compared with other two planting patterns, furrow planting increased the total water consumption of the experimental field, increased the proportion of soil water consumption in the total water consumption, and improved the WUE and wheat grain yield. [Conclusion] Under the experimental conditions, considering both wheat grain yield and WUE, furrow planting with moderately deficit irrigation at joint- ing and anthesis stages is more suitable for the winter wheat production in North China Plain.展开更多
Supported by the technologies of remote sensing(RS) and geographical informa-tion system(GIS),we chose northwest of Beijing as a study area and gave priority to under-standing of the spatial-temporal characteristics o...Supported by the technologies of remote sensing(RS) and geographical informa-tion system(GIS),we chose northwest of Beijing as a study area and gave priority to under-standing of the spatial-temporal characteristics of landscape pattern change through visually interpreted Landsat TM images of 1989,1996 and 2005.It is believed that there were a series of landscape ecological problems caused by city expansion:landscape ecological connec-tivity was low;landscape structure was simplified;the fragmentation of green land patch was more obvious on the plain areas,moreover,spatial distribution of green land was unbalanced.For this reason,this study adopted accumulative cost distance model,combined with eco-system services and spatial interactions of landscape types,analyzed the spatial difference of the ecological function and the compactness of landscape structure in the study area,and further discussed the landscape pattern optimization proposal.We find that it is essential to protect and establish ecological sources,to establish urban ecological corridors,and to es-tablish ecological nodes at the landscape ecological strategic positions so as to intensify spatial relationships among landscape elements and maintain continuity of landscape eco-logical process and pattern in the course of city expansion.The methods and final results from this study are expected to be useful for landscape ecological planning in Beijing region.展开更多
To explore the effects of farming methods,straw returning and their interaction on corn yield and nitrogen utilization,the experiment was conducted for two consecutive years from 2016 to 2017 at the Xiangyang Experime...To explore the effects of farming methods,straw returning and their interaction on corn yield and nitrogen utilization,the experiment was conducted for two consecutive years from 2016 to 2017 at the Xiangyang Experimental Base of Northeast Agricultural University in Heilongjiang Province of China.The method of combining farming with straw returning was used and six treatments as rotary tillage(R)+no straw returning(K),rotary tillage(R)+straw returning(S),tillage(T)+no straw returning(K),tillage(T)+straw returning(S),tillage(T)+subsoiling(D)+no straw returning(K)and tillage(T)+subsoiling(D)+straw returning(S)were set to study the effects of different tillage methods and straw returning on corn yield and nitrogen accumulation and utilization.The corn yield,nitrogen accumulation,nitrogen transport,grain weight and dry matter accumulation of tillage(T)+subsoiling(D)and tillage(T)were significantly higher than those of rotary tillage(R)treatment.Meanwhile,the corn yield,nitrogen accumulation and dry matter accumulation of TD treatment were significantly higher than those of T treatment;the corn yield,dry matter accumulation,kernel weight,nitrogen dry matter production efficiency and nitrogen grain production efficiency of S treatment were significantly higher than those of K treatment.Among the treatments,the yield,nitrogen accumulation and utilization efficiency of TDS,TS and TDK were the highest.The yield,nitrogen accumulation and nitrogen transport of TDS were significantly higher than those of TS.In 2016,TDS production increased by 7.30%and 8.20%compared with TS;and TDS nitrogen accumulation increased by 6.78%and 9.50%compared with TS,while the yield and nitrogen grain production efficiency were significantly higher than those of TDK.Therefore,under the conditions of this experiment,on the basis of straw returning,tillage+subsoiling was the suitable farming method.展开更多
Strike-slip faults,proven to be closely linked to hydrocarbon migration and accumulation,are wide-spread in the Tarim Basin Craton.Deformation patterns in the eastern part of the Central Uplift Belt of the Tarim Basin...Strike-slip faults,proven to be closely linked to hydrocarbon migration and accumulation,are wide-spread in the Tarim Basin Craton.Deformation patterns in the eastern part of the Central Uplift Belt of the Tarim Basin are analyzed in detail to understand the deformation model and genetic mechanism of strike-slip faults,how their patterns impact reservoir formation and influence oil and gas potential.Regional tectonic events are taken into consideration to identify the primary factors that controlled the development of strike-slip faults in the region.The Tazhong Uplift in the eastern part of Central Uplift Belt is believed to be a complex anticlinal uplift formed by compression-and-torsion acting on the Cambrian-Middle Ordovician platform during the middle-late Caledonian period.Multi-stage development of this north-trending fault-fold belt and the NE-trending strike-slip faults make it structurally complex.The NE-trending Paleozoic strike-slip faults were formed jointly by the differential thrusting of the Tazhong Uplift along Fault No.Ⅰand the NE-trending shear sliding of the basal fault blocks during the middle-late Caledonian-early Hercynian.Based on the distribution of effective source rocks,the tectonic setting during the period critical to hydrocarbon accumulation,and the distribution of conductive faults,the northern slope of the Tazhong Upliftd-especially its west-central part where the NE-trending faults are developed is not only located close to the northern hydrocarbon source rock area but also possesses conditions suitable for the development of carbonate reservoirs.In addition,the NE-trending faults provide passage for initial development of the reservoir and the subsequent migration of oil and gas from the Aman area to the uplifted zone,making the Tazhong Uplift an extremely favorable area for oil and gas accumulation with substantial potential for exploration.展开更多
Cumulative effects on wetland soils under different cultivation patterns were analyzed in the experimental fields of the Ecological Experimental Station of Mire-wetlands in Sanjiang Plain. The results suggested that t...Cumulative effects on wetland soils under different cultivation patterns were analyzed in the experimental fields of the Ecological Experimental Station of Mire-wetlands in Sanjiang Plain. The results suggested that the paddy field combined with the glebe to act on the soil environment. Under the combination of natural and anthropological factors, the cultivation of the paddy field and the glebe obviously related with different kinds of fertility factors of soil. The remarkable relation among organic matter, total nitrogen and available nitrogen reflected the fertilization of the soil at some extent.展开更多
Objective:To explore the role of endothelial biomarkers in predicting damp-heat syndrome in diabetic kidney disease(DKD).Methods:A total of 183 patients with DKD were divided into 3 groups:the early DKD group,establis...Objective:To explore the role of endothelial biomarkers in predicting damp-heat syndrome in diabetic kidney disease(DKD).Methods:A total of 183 patients with DKD were divided into 3 groups:the early DKD group,established DKD group,and advanced DKD group.All patients were classified according to traditional Chinese medicine(TCM)syndrome type,and clinical indexes were collected for statistical analysis.Results:A total of 183 DKD patients were included in this study.Fibroblast growth factor 23(FGF23),chitinase-3-like protein 1(CHI3L1),endocan,tumor necrosis factor receptor 1(TNFR1),secretory leukocyte protease inhibitor(SLPI),and vascular endothelial growth factor A(VEGF-A)were increased in advanced DKD.FGF23,CHI3L1,endocan,SLPI,and TNFR1 showed a negative correlation with estimated glomerular filtration rate(eGFR),while they had a positive correlation with 24 h urine protein.After adjusting for age,gender,diabetes duration,body mass index(BMI),hemoglobin,glucose,uric acid,24 h urine protein,cholesterol,triglyceride,low-density lipoprotein,and hemoglobin A1c(HbA1c),the multiple regression analysis showed that FGF23,endocan,TNFR1,and SLPI significantly correlated with eGFR.Conclusions:FGF23,endocan,TNFR1,and SLPI are elevated in advanced DKD compared with early stage,and they may take part in the pathogenesis and progression of DKD.Our study provides useful biomarkers for predicting the appearance of damp-heat syndrome,including FGF23,endocan,TNFR1,and SLPI.展开更多
This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consump...This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consumption, which enables one to estimate the energy consumption during any period of the year. The energy readings and the normalized accumulated energy profile are used to estimate the hourly consumed active power, which can be used for future planning and sizing the equipment of the electrical system. The effectiveness of the proposed method is demonstrated by comparing the simulated results with that of real measured data.展开更多
基金part of the National Key Fundamental Research Program(No.2005CB422108)the National Natural Science Foundation of China(Grant No.40672092).
文摘By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable oil and gas accumulation series in the Tabei (northern Tarim uplift) uplift. There are different patterns of hydrocarbon accumulation on the northern and southern slopes of the Yingmaili low uplift. The north-south differentiation of oil reservoirs were caused by different lithologies of the residual carbonate strata and the key constraints on the development of the reservoir beds. The Mesozoic terrestrial organic matter in the Kuqa depression and the Palaeozoic marine organic matter in the Manjiaer sag of the Northern depression are the major hydrocarbon source rocks for the northern slope and southern slope respectively. The hydrocarbon accumulation on the northern and southern slopes is controlled by differences in maturity and thermal evolution history of these two kinds of organic matter. On the southern slope, the oil accumulation formed in the early stage was destroyed completely, and the period from the late Hercynian to the Himalayian is the most important time for hydrocarbon accumulation. However, the time of hydrocarbon accumulation on the northern slope began 5 Ma B.P. Carbonate inner buried anticlines reservoirs are present on the southern slope, while weathered crust and paleo-buried hill karst carbonate reservoirs are present on the northern slope. The northern and southern slopes had different controlling factors of hydrocarbon accumulation respectively. Fracture growth in the reservoir beds is the most important controlling factor on the southern slope; while hydrocarbon accumulation on the northern slope is controlled by weathered crust and cap rock.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Planperiod (2007BAD89B03, 2007BAD17B07 and2006BAD05B01)
文摘Heavy metal accumulation and its influential factors were studied in the different land use soils, which would provide a theoretical basis for controlling the content of heavy metals in soils. To identify the effects of land use on the accumulation of heavy metals in soils, 148 soil samples were collected from four land use patterns including greenhouse field, uncovered vegetable field, maize field, and forest field in Siping area of Jilin Province, China, and Cr, Ni, Cu, As, Cd, Pb, and Zn contents of those samples were determined with ICP and ICP-Mass. The result showed that there was a rather large difference in effects of the accumulation of Cr, Ni, Cu, As, Cd, and Zn in soils under different land use patterns, except Pb. Based on the assessment which compared with background concentrations in soil, the higher accumulation of heavy metals was found in greenhouse and uncovered vegetable field, much less in maize field and forest field. The mean contents of heavy metals in soils from high to low were arranged in order of greenhouse field, uncovered vegetable field, maize field, and forest field. Cd and Cu had relatively serious accumulation in soils compared to Cr, Ni, As, and Zn. The mean content of Cd in greenhouse field was 0.467 mg kg-x,which exceeded the grade II of the Chinese Soil Quality Criterion GB15618-1995 (6.5 〈pH〈7.5) for Cd standard of 0.3 mg kg^-1, while it was 5.2 times of Cd standard in the forest fields. The mean contents ofCr, Ni, Cu, As, Pb, and Zn in soils under four land use patterns were lower than the grade II of the Chinese Soil Quality Criterion. Compared with the soil cultivated years, the agricultural chemical compounds and manures application, especially the quality and quantity of applied fertilizer was one of the main reasons for leading to different accumulation of heavy metals in soils under the studied land use patterns. The accumulation of heavy metals, such as Cr, Ni, Cu, As, Cd, and Zn in soils was significantly affected by land use patterns, among them the accumulation of heavy metals in greenhouse soils was higher than others. It is suggested that the application of chemical fertilizer, organic fertilizer, and pesticides with high contents of heavy metals should be avoided to prevent the accumulation of heavy metal and keep high quality soils for sustainable use.
文摘Source-contacting gas, which is also called basin-center gas, deep basin gas, is the tight-sand gas accumulation contacting closely to its source rocks. Having different accumulation mechanisms from conventional gas reservoirs that are formed by replacement way, the typical source-contacting gas reservoirs are formed by piston-typed migration forward way. Source-contacting gas accumulations exhibit a series of distinctly mechanic characteristics. According to the valid combination of these characteristics, the estimation for the type of discovered gas reservoirs or distributions of source-contacting gas reservoirs can be forecasted. The source-contacting gas is special for having no edge water or bottom water for gas and complicated gas-water relationships, which emphasizes the intimate association of reservoir rocks with source rocks, which is called the root of the gas reservoir. There are many basins having the mechanic conditions for source-contacting gas accumulations in China, which can be divided into three regions. Most of the basins with favorable accumulation conditions are located mainly in the central and western China. According to the present data, basins having source-contacting gas accumulations in China can be divided into three types, accumulation conditions and configuration relationships are the best in type A basins and they are the larger basins in central China. Type B basins with plain accumulation conditions exist primarily in eastern China and also the basins in western China. Accumulation conditions and exploration futures are worse in type C basins, which refer mainly to the small basins in southern China and China Sea basins. Main source-contacting gas basins in China are thoroughly discussed in this paper and the distribution patterns of source-contacting gas in five huge basins are discussed and forecasted.
文摘Baise basin is a semi-graben type , pan-shaped faulted basin of Early Tertiary , in which carbonate lacustrine deposits and elastic lacustrine deposits developed . The assemblages of Gilbert-type delta-lakes ,littoral ,shallow and deep water fades are recognized . Based on grain size , the clastic lacustrine deposit systems can be grouped in three kinds of depositional sequences of progressive deposition : (1)from coarse to fine , (2)from fine to coarse and (3) from fine to coarse and then to fine agan . This was controlled mainly by hydrodynamic factor of lake bottom type .Lake shore was an important place for coal accumulation and peatmoor development . It had long time for coal accumulation and there was a very little amount of minerals into the basin ,and the thick coal layer and high quality coal developed m the zone where initial lake bottom was plan-like and the surface stream flow was weak .Peat accumulation advanced from the margin to the center of basin .Carbonate lakes contained much water ,very high preponderant contenis of coagel ,low inert contents and no fusinite in the coal .
文摘Purpose:The study aimed to describe youth time-use compositions,focusing on time spent in shorter and longer bouts of sedentary behavior and physical activity(PA),and to examine associations of these time-use compositions with cardiometabolic biomarkers.Methods:Accelerometer and cardiometabolic biomarker data from 2 Australian studies involving youths 7-13 years old were pooled(complete cases with accelerometry and adiposity marker data,n=782).A 9-component time-use composition was formed using compositional data analysis:time in shorter and longer bouts of sedentary behavior;time in shorter and longer bouts of light-,moderate-,or vigorous-intensity PA;and"other time"(i.e.,non-wear/sleep).Shorter and longer bouts of sedentary time were defined as<5 min and>5 min,respectively.Shorter bouts of light-,moderate-,and vigorous-intensity PA were defined as<1 min;longer bouts were defined as≥1 min.Regression models examined associations between overall time-use composition and cardiometabolic biomarkers.Then,associations were derived between ratios of longer activity patterns relative to shorter activity patterns,and of each intensity level relative to the other intensity levels and"other time",and cardiometabolic biomarkers.Results:Confounder-adjusted models showed that the overall time-use composition was associated with adiposity,blood pressure,lipids,and the summary score.Specifically,more time in longer bouts of light-intensity PA relative to shorter bouts of light-intensity PA was significantly associated with greater body mass index z-score(zBMI)(β=1.79;SE=0.68)and waist circumference(β=18.35,SE=4.78).When each activity intensity was considered relative to all higher intensities and"other time",more time in light-and vigorous-intensity PA,and less time in sedentary behavior and moderate-intensity PA,were associated with lower waist circumference.Conclusion:Accumulating PA,particularly light-intensity PA,in frequent short bursts may be more beneficial for limiting adiposity compared to accumulating the same amount of PA at these intensities in longer bouts.
文摘In northwestern Ordos Basin, the Triassic reservoir Chang 9 has favorable reservoir forming conditions, extensive reservoir development, and huge potential for oil exploration and exploitation. Studying the main controlling factors and accumulation model of Chang 9 reservoir in this area can provide a basis for the production targets, and assist in formulating reasonable development technology policy. In this paper, to explore and summarize the hydrocarbon accumulation model, the Chang 9 reservoir were analyzed from the aspects of oil source, fracture, oil migration, structure, lithology and reservoir physical properties for the main controlling factors in this area. Organic geochemical and geological comprehensive analysis that the oil-source of the Chang 9 reservoir in the northwest of Ordos Basin is derived from Chang 7 hydrocarbon source rocks. The fractures provide a sound channel for the "vertical multi-point filling" of the oil source from Chang 7 to Chang 9. The crude oil migrates vertically from Chang 7 to Chang 9, then expands horizontally to form a reservoir. Structures play an important role in controlling the distribution of reservoirs, the control by sand in small layer and physical property is also obvious. This paper creatively establishes the reservoir accumulation model of Chang 9 in northwest of Ordos Basin, which is characterized by Vertical multi-point filling, horizontal expansion becomes oil pool. It reveals the genetic mechanism of the development of Chang 9 multi-reservoir in the study area, which provides guidance for exploration and evaluation deployment.
基金Supported by Scientific and Technological Development Plan of Shandong Province(2014GNC113001)Open Fund for National Key Laboratory of Crop Biology(2014KF11)
文摘[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high-yield winter wheat cultivar Jimai 22 as the experimental material, field experiment was conducted during 2008- 2010. A total of 3 planting patterns were designed, uniform row, wide-narrow row and furrow. Under each planting pattern, total four irrigation patterns were designed, no irrigation (Wo), irrigation at jointing state (Wl), irrigation at jointing and anthesis stages (W2) and irrigation at jointing, anthesis and milking stages (W3), and the irri- gation amount per treatment was all 60 mm. [Result] Under the three planting pat- terns, with the increased irrigation amount, the total water consumption of the exper- imental field increased; the proportion of irrigation in the total water consumption in- creased, and that of soil water consumption in the total water consumption de- creased significantly. Compared with W0 treatment, various irrigation treatments sig- nificantly increased the post-anthesis dry matter accumulation in wheat plants; with the increased irrigation amount, the grain yield under the three planting patterns all increased, while the water use efficiency (WUE) decreased. Under the same irriga- tion conditions, compared with other two planting patterns, furrow planting increased the total water consumption of the experimental field, increased the proportion of soil water consumption in the total water consumption, and improved the WUE and wheat grain yield. [Conclusion] Under the experimental conditions, considering both wheat grain yield and WUE, furrow planting with moderately deficit irrigation at joint- ing and anthesis stages is more suitable for the winter wheat production in North China Plain.
基金Program for New Century Excellent Talent in the University,No.NCET-06-0122The National Water Special Project,No.2008ZX07526-002-02+3 种基金Specific Financial Funds Project of Beijing Academy of Science and Technology (BJAST),Platform Construction for Typical Contaminated Soil Remediation Technology of Bei-jing (2008A-1)Plan Support for Innovative Team (2008A-6) of BJASTNSFC,No.30871964BJNSFC,No.4073036
文摘Supported by the technologies of remote sensing(RS) and geographical informa-tion system(GIS),we chose northwest of Beijing as a study area and gave priority to under-standing of the spatial-temporal characteristics of landscape pattern change through visually interpreted Landsat TM images of 1989,1996 and 2005.It is believed that there were a series of landscape ecological problems caused by city expansion:landscape ecological connec-tivity was low;landscape structure was simplified;the fragmentation of green land patch was more obvious on the plain areas,moreover,spatial distribution of green land was unbalanced.For this reason,this study adopted accumulative cost distance model,combined with eco-system services and spatial interactions of landscape types,analyzed the spatial difference of the ecological function and the compactness of landscape structure in the study area,and further discussed the landscape pattern optimization proposal.We find that it is essential to protect and establish ecological sources,to establish urban ecological corridors,and to es-tablish ecological nodes at the landscape ecological strategic positions so as to intensify spatial relationships among landscape elements and maintain continuity of landscape eco-logical process and pattern in the course of city expansion.The methods and final results from this study are expected to be useful for landscape ecological planning in Beijing region.
基金Supported by the Special Fund for Agro-scientific Research in Public Interest in China(201503119-06-01)。
文摘To explore the effects of farming methods,straw returning and their interaction on corn yield and nitrogen utilization,the experiment was conducted for two consecutive years from 2016 to 2017 at the Xiangyang Experimental Base of Northeast Agricultural University in Heilongjiang Province of China.The method of combining farming with straw returning was used and six treatments as rotary tillage(R)+no straw returning(K),rotary tillage(R)+straw returning(S),tillage(T)+no straw returning(K),tillage(T)+straw returning(S),tillage(T)+subsoiling(D)+no straw returning(K)and tillage(T)+subsoiling(D)+straw returning(S)were set to study the effects of different tillage methods and straw returning on corn yield and nitrogen accumulation and utilization.The corn yield,nitrogen accumulation,nitrogen transport,grain weight and dry matter accumulation of tillage(T)+subsoiling(D)and tillage(T)were significantly higher than those of rotary tillage(R)treatment.Meanwhile,the corn yield,nitrogen accumulation and dry matter accumulation of TD treatment were significantly higher than those of T treatment;the corn yield,dry matter accumulation,kernel weight,nitrogen dry matter production efficiency and nitrogen grain production efficiency of S treatment were significantly higher than those of K treatment.Among the treatments,the yield,nitrogen accumulation and utilization efficiency of TDS,TS and TDK were the highest.The yield,nitrogen accumulation and nitrogen transport of TDS were significantly higher than those of TS.In 2016,TDS production increased by 7.30%and 8.20%compared with TS;and TDS nitrogen accumulation increased by 6.78%and 9.50%compared with TS,while the yield and nitrogen grain production efficiency were significantly higher than those of TDK.Therefore,under the conditions of this experiment,on the basis of straw returning,tillage+subsoiling was the suitable farming method.
基金financial support from National Natural Science Foundation of China projects 41972128 and 41872161a Strategic Priority Research Program of the Chinese Academy of Sciences grant(XDA14010402).
文摘Strike-slip faults,proven to be closely linked to hydrocarbon migration and accumulation,are wide-spread in the Tarim Basin Craton.Deformation patterns in the eastern part of the Central Uplift Belt of the Tarim Basin are analyzed in detail to understand the deformation model and genetic mechanism of strike-slip faults,how their patterns impact reservoir formation and influence oil and gas potential.Regional tectonic events are taken into consideration to identify the primary factors that controlled the development of strike-slip faults in the region.The Tazhong Uplift in the eastern part of Central Uplift Belt is believed to be a complex anticlinal uplift formed by compression-and-torsion acting on the Cambrian-Middle Ordovician platform during the middle-late Caledonian period.Multi-stage development of this north-trending fault-fold belt and the NE-trending strike-slip faults make it structurally complex.The NE-trending Paleozoic strike-slip faults were formed jointly by the differential thrusting of the Tazhong Uplift along Fault No.Ⅰand the NE-trending shear sliding of the basal fault blocks during the middle-late Caledonian-early Hercynian.Based on the distribution of effective source rocks,the tectonic setting during the period critical to hydrocarbon accumulation,and the distribution of conductive faults,the northern slope of the Tazhong Upliftd-especially its west-central part where the NE-trending faults are developed is not only located close to the northern hydrocarbon source rock area but also possesses conditions suitable for the development of carbonate reservoirs.In addition,the NE-trending faults provide passage for initial development of the reservoir and the subsequent migration of oil and gas from the Aman area to the uplifted zone,making the Tazhong Uplift an extremely favorable area for oil and gas accumulation with substantial potential for exploration.
基金Supported by Chinese Youth Natural Sciences Fund Project(40501030)
文摘Cumulative effects on wetland soils under different cultivation patterns were analyzed in the experimental fields of the Ecological Experimental Station of Mire-wetlands in Sanjiang Plain. The results suggested that the paddy field combined with the glebe to act on the soil environment. Under the combination of natural and anthropological factors, the cultivation of the paddy field and the glebe obviously related with different kinds of fertility factors of soil. The remarkable relation among organic matter, total nitrogen and available nitrogen reflected the fertilization of the soil at some extent.
基金This project was supported by the Fundamental Research Funds for the Central Universities(2017-JYB-JS-075)National Key Project for Drug Discovery(2017ZX09304019).
文摘Objective:To explore the role of endothelial biomarkers in predicting damp-heat syndrome in diabetic kidney disease(DKD).Methods:A total of 183 patients with DKD were divided into 3 groups:the early DKD group,established DKD group,and advanced DKD group.All patients were classified according to traditional Chinese medicine(TCM)syndrome type,and clinical indexes were collected for statistical analysis.Results:A total of 183 DKD patients were included in this study.Fibroblast growth factor 23(FGF23),chitinase-3-like protein 1(CHI3L1),endocan,tumor necrosis factor receptor 1(TNFR1),secretory leukocyte protease inhibitor(SLPI),and vascular endothelial growth factor A(VEGF-A)were increased in advanced DKD.FGF23,CHI3L1,endocan,SLPI,and TNFR1 showed a negative correlation with estimated glomerular filtration rate(eGFR),while they had a positive correlation with 24 h urine protein.After adjusting for age,gender,diabetes duration,body mass index(BMI),hemoglobin,glucose,uric acid,24 h urine protein,cholesterol,triglyceride,low-density lipoprotein,and hemoglobin A1c(HbA1c),the multiple regression analysis showed that FGF23,endocan,TNFR1,and SLPI significantly correlated with eGFR.Conclusions:FGF23,endocan,TNFR1,and SLPI are elevated in advanced DKD compared with early stage,and they may take part in the pathogenesis and progression of DKD.Our study provides useful biomarkers for predicting the appearance of damp-heat syndrome,including FGF23,endocan,TNFR1,and SLPI.
文摘This paper presents a nonlinear approach to estimate the consumed energy in electric power distribution feeders. The proposed method uses the statistical solution algorithm to analyze the active energy monthly consumption, which enables one to estimate the energy consumption during any period of the year. The energy readings and the normalized accumulated energy profile are used to estimate the hourly consumed active power, which can be used for future planning and sizing the equipment of the electrical system. The effectiveness of the proposed method is demonstrated by comparing the simulated results with that of real measured data.