Digital elevation model (DEM) can be generated by interferometric synthetic aperture radar (InSAR). In this paper, the interferometric processing and analyses are carried out for Damxung-Yangbajain area in Tibet, ...Digital elevation model (DEM) can be generated by interferometric synthetic aperture radar (InSAR). In this paper, the interferometric processing and analyses are carried out for Damxung-Yangbajain area in Tibet, using a pair of Europe remote-sensing satellite (ERS)-1/2 tandem SAR images acquired on 6 and 7 April 1996. A portion of the In- SAR-derived DEM is selected and compared with the 1:50 000 DEM to determine the precision of the InSAR-derived DEM. The comparison indicates that the root mean squared errors (RMSE), which are used to evaluate error, are about 35, 60, 10, and 15 m in the studied area, mountainous area, basin area and near-fault area, respectively, suggesting that obvious errors are mainly in mountainous area. Besides, the limitation of InSAR technology to generate DEM is analyzed. Our investigation shows that InSAR is an effective tool in geodesy and an important complement to field surveying in some dangerous areas.展开更多
基金supported by the Basic Scientific Research Special Fund from Institute of Earthquake Science, China Earthquake Administration (02092403 and 0207690224)
文摘Digital elevation model (DEM) can be generated by interferometric synthetic aperture radar (InSAR). In this paper, the interferometric processing and analyses are carried out for Damxung-Yangbajain area in Tibet, using a pair of Europe remote-sensing satellite (ERS)-1/2 tandem SAR images acquired on 6 and 7 April 1996. A portion of the In- SAR-derived DEM is selected and compared with the 1:50 000 DEM to determine the precision of the InSAR-derived DEM. The comparison indicates that the root mean squared errors (RMSE), which are used to evaluate error, are about 35, 60, 10, and 15 m in the studied area, mountainous area, basin area and near-fault area, respectively, suggesting that obvious errors are mainly in mountainous area. Besides, the limitation of InSAR technology to generate DEM is analyzed. Our investigation shows that InSAR is an effective tool in geodesy and an important complement to field surveying in some dangerous areas.