Fatigue test was carried out on AZ31B magnesium alloy. Under 2×10 6 cycle times, the fatigue strengths of base metal (BM), butt joint (BJ), transverse cross joint (TJ), lateral connection joint (LJ) are 6...Fatigue test was carried out on AZ31B magnesium alloy. Under 2×10 6 cycle times, the fatigue strengths of base metal (BM), butt joint (BJ), transverse cross joint (TJ), lateral connection joint (LJ) are 66.72, 39.00, 24.38 and 24.40 MPa, respectively. The crack propagation behavior of the alloy was analyzed by optical microscopy. The AZ31B magnesium alloy base metal has a smooth crack propagation macroscopic path. However, the microscopic path is twisted and some cracks have two forks, and the crack propagation is transgranular. The crack initiates in the weld toe and the crack propagates along the HAZ for the BJ and TJ; for the LJ crack initiates in the fillet weld leg. The fatigue fracture mechanisms were analyzed by SEM. The fatigue fracture surface consists of quasi-cleavage patterns or cleavage step and a brittle fracture occurs. Numerous secondary cracks are observed; some fatigue striations exist in butt joint and its size is about 5 μm.展开更多
There remain unmet clinical needs for safe and effective bone anabolic therapies to treat aging-related osteoporosis and to improve fracture healing in cases of nonunion or delayed union. Wnt signaling has emerged as ...There remain unmet clinical needs for safe and effective bone anabolic therapies to treat aging-related osteoporosis and to improve fracture healing in cases of nonunion or delayed union. Wnt signaling has emerged as a promising target pathway for developing novel bone anabolic drugs. Although neutralizing antibodies against the Wnt antagonist sclerostin have been tested,Wnt ligands themselves have not been fully explored as a potential therapy. Previous work has demonstrated Wnt7b as an endogenous ligand upregulated during osteoblast differentiation, and that Wnt7b overexpression potently stimulates bone accrual in the mouse. The earlier studies however did not address whether Wnt7b could promote bone formation when specifically applied to aged or fractured bones. Here we have developed a doxycycline-inducible strategy where Wnt7b is temporally induced in the bones of aged mice or during fracture healing. We report that forced expression of Wnt7b for 1 month starting at 15 months of age greatly stimulated trabecular and endosteal bone formation, resulting in a marked increase in bone mass. We further tested the effect of Wnt7b on bone healing in a murine closed femur fracture model. Induced expression of Wnt7b at the onset of fracture did not affect the initial cartilage formation but promoted mineralization of the subsequent bone callus. Thus, targeted delivery of Wnt7b to aged bones or fracture sites may be explored as a potential therapy.展开更多
The effect of T6heat treatment on the fracture strength and reliability of AM60B alloy was studied.The tensile specimens were poured at three different temperatures of670,685and700?C for different holding times of5,10...The effect of T6heat treatment on the fracture strength and reliability of AM60B alloy was studied.The tensile specimens were poured at three different temperatures of670,685and700?C for different holding times of5,10and15min.The fluidity test was also conducted to determine the fluidity length under different pouring temperatures and holding times.According to the results,the optimum pouring temperature and holding time were determined as685?C and10min,respectively.SEM fractography of the tensile specimens reveals that the entrained oxides and oxide-related porosities are the main factors responsible for the reduction of fracture strength under the non-optimal casting conditions.The Weibull statistical approach was used to quantify the scatter of fracture strength in as-cast and heat-treated conditions.For this purpose,T6schedule was applied to the specimens prepared under the optimal casting condition.It is found that,despite minor effect on the average fracture strength,T6heat treatment improves the reliability of castings,where the Weibull modulus is increased by75%.According to the microstructural and fractography observations,this improvement is related to the evolution of more uniform microstructure and the elimination of coarse brittleβ-particles in heat-treated samples.展开更多
A near eutectic Al−12.6Si alloy was developed with 0.0wt%,2.0wt%,4.0wt%,and 6.0wt%Al−5Ti−1B master alloy.The micro-structural morphology,hardness,tensile strength,elongation,and fracture behaviour of the alloys were s...A near eutectic Al−12.6Si alloy was developed with 0.0wt%,2.0wt%,4.0wt%,and 6.0wt%Al−5Ti−1B master alloy.The micro-structural morphology,hardness,tensile strength,elongation,and fracture behaviour of the alloys were studied.The unmodified Al−12.6Si al-loy has an irregular needle and plate-like eutectic silicon(ESi)and coarse polygonal primary silicon(PSi)particles in the matrix-likeα-Al phase.The P_(Si),E_(Si),andα-Al morphology and volume fraction were changed due to the addition of the Al−5Ti−1B master alloy.The hardness,UTS,and elongation improved due to the microstructural modification.Nano-sized in-situ Al3Ti particles and ex-situ TiB_(2)particles caused the mi-crostructural modification.The fracture images of the developed alloys exhibit a ductile and brittle mode of fracture at the same time.The Al−5Ti−1B modified alloys have a more ductile mode of fracture and more dimples compared to the unmodified alloy.展开更多
The toughening of epoxy resin(EP)and the interlaminar toughening of carbon fiber reinforced composite(CF/EP)laminates have been widely concerned.In this work,the needle-likeγ-FeOOH nanoparticles were prepared by liqu...The toughening of epoxy resin(EP)and the interlaminar toughening of carbon fiber reinforced composite(CF/EP)laminates have been widely concerned.In this work,the needle-likeγ-FeOOH nanoparticles were prepared by liquid phase deposition-air oxidation method,and then were calcined under different conditions to obtainγ-FeOOH andγ-Fe_(2)O_(3) hybrid nanoparticles(γ-FeOOH@Fe_(2)O_(3)).Effect of calcination condition ofγ-FeOOH@-Fe_(2)O_(3) and magnetic field assistance on fracture toughness(KIC)of EP was systematically investigated.Then the selectedγ-FeOOH@Fe_(2)O_(3) with the best toughening effect were used to improve the mode I interlaminar fracture toughness(GIC)of CF/EP laminate.The resultingγ-FeOOH@Fe_(2)O_(3) have a length of around 1μm,a diameter of around 100 nm and the Ms of 8.99–45.96 emu/g.After calcinated at 250℃ for 1 h,theγ-FeOOH@Fe_(2)O_(3) containing 24 wt%FeOOH and 76 wt%Fe_(2)O_(3) achieved the best toughening effect.Under a magnetic field of 0.09 T,the KIC of theγ-FeOOH@Fe_(2)O_(3)/EP composite(2.45 MPa m^(1/2)) is 81.7%and 66.7%higher than that of neat epoxy and the composite without magnetic field induction,respectively.Furthermore,the GIC of theγ-FeOOH@Fe_(2)O_(3)/CF/EP composite(0.914 kJ/m^(2)) is also significantly increased by 88.8%and 51.8%compared to that of CF/EP and the corresponding composite without magnetic field induction,respectively.展开更多
The bonding characteristics of (0001)α2||(111)γ interface in two-phase TiAl alloy have beeninvestigated with the recursion method. The results of bond order integral and interaction energybetween atoms are presented...The bonding characteristics of (0001)α2||(111)γ interface in two-phase TiAl alloy have beeninvestigated with the recursion method. The results of bond order integral and interaction energybetween atoms are presented. The effects of B on atoms bonding both in constituent phase andat the α2/γ interface have been studied. The correlation between the mechanical propertiesof the alloy and the bonding at the interface has been discussed. The results suggest that Bsegregation to the interface benefits the ductility. This is supported by the related experiment.展开更多
This paper presents an experimental study on the static tensile test of resistance spot welding between 2.0 mm thick dissimilar 301L⁃DLT and Q235B in tensile⁃shear specimens with different welding nugget diameters.For...This paper presents an experimental study on the static tensile test of resistance spot welding between 2.0 mm thick dissimilar 301L⁃DLT and Q235B in tensile⁃shear specimens with different welding nugget diameters.Force⁃displacement curves of the specimens were compared with simulation curves by the finite element software.The stress⁃strain distribution and fracture evolution process during the tensile process were analyzed.The hardness of the nugget was higher than that of the base material and the heat affected zone.Under static tensile load,the stress and strain in the spot welded joints increased exponentially with the increase of displacement,and the maximum stress was located at the nugget edge of the 301L plate loading side.The static tensile strength and plastic deformation of the spot welded joint failure by the nugget pulled⁃out fracture mode was better than that by the interface fracture mode.The critical nugget diameter of Q235B for the transition from nugget interfacial fracture to the pull⁃out fracture was 7.12 mm,and that of 301L was 7.81 mm,which was about 5√t.展开更多
A number of Fe-Si-B amorphous ribbons are made by using melt spinning method. The microstructure, mechanical and other relevant properties of thin amorphous ribbons of Fe81.50B1.40Si7.95Nb7.37Cu1.73P0.05 alloy at room...A number of Fe-Si-B amorphous ribbons are made by using melt spinning method. The microstructure, mechanical and other relevant properties of thin amorphous ribbons of Fe81.50B1.40Si7.95Nb7.37Cu1.73P0.05 alloy at room temperature were studied with several equipment including Differential scanning calorimetry (DSC), X-ray diffraction (XRD),Scanning electron microscope (SEM), and tensile machine. Significantly different microstructures exist between the free and wheel face of the thin amorphous ribbons. The free face is smooth while the wheel face is coarse with a great number of micro voids on the surface. Experimental results show that the tensile strength and elastic modulus of thethin amorphous ribbons at room temperature are 1951 MPa and 70 GPa. In addition, the amorphous ribbons possess reasonable tensile elongation (2.46%). The fracture appearance of amorphous ribbons of Fe81.50B1.40Si7.95Nb7.37Cu1.73P0.05 alloyis a mixed mode of ductile and brittle fracture which includes dimples and partial cleavage fracture similar to the crystalline materials. The dimple feature proves that it still has plastic characteristics on the micro scale.展开更多
To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain...To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain refiner with different RE composition were prepared by vacuum-melting. The microstructure and fracture behavior of the AI-7.0Si-0.55Mg alloys with the grain refiners were observed by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and the mechanical properties of the alloys were tested in mechanical testing machine at room temperature. The observation of AI-Ti-B-RE morphology and internal structure of the particles reveals that it exhibits a TiAl3/Ti2Al20RE core-shell structure via heterogeneous TiB2 nuclei. The tensile strength of Al-7.0Si-0.55Mg alloys with Al-5Ti-1B-3.0RE grain refiner reaches the peak value at the same addition (0.2%) of grain refiner.展开更多
基金Project(50675148)supported by the National Natural Science Foundation of China
文摘Fatigue test was carried out on AZ31B magnesium alloy. Under 2×10 6 cycle times, the fatigue strengths of base metal (BM), butt joint (BJ), transverse cross joint (TJ), lateral connection joint (LJ) are 66.72, 39.00, 24.38 and 24.40 MPa, respectively. The crack propagation behavior of the alloy was analyzed by optical microscopy. The AZ31B magnesium alloy base metal has a smooth crack propagation macroscopic path. However, the microscopic path is twisted and some cracks have two forks, and the crack propagation is transgranular. The crack initiates in the weld toe and the crack propagates along the HAZ for the BJ and TJ; for the LJ crack initiates in the fillet weld leg. The fatigue fracture mechanisms were analyzed by SEM. The fatigue fracture surface consists of quasi-cleavage patterns or cleavage step and a brittle fracture occurs. Numerous secondary cracks are observed; some fatigue striations exist in butt joint and its size is about 5 μm.
基金supported by AR060456 (F.L.), AR047867 (M.J.S.)the Washington University Musculoskeletal Research Center (NIH P30 AR057235)
文摘There remain unmet clinical needs for safe and effective bone anabolic therapies to treat aging-related osteoporosis and to improve fracture healing in cases of nonunion or delayed union. Wnt signaling has emerged as a promising target pathway for developing novel bone anabolic drugs. Although neutralizing antibodies against the Wnt antagonist sclerostin have been tested,Wnt ligands themselves have not been fully explored as a potential therapy. Previous work has demonstrated Wnt7b as an endogenous ligand upregulated during osteoblast differentiation, and that Wnt7b overexpression potently stimulates bone accrual in the mouse. The earlier studies however did not address whether Wnt7b could promote bone formation when specifically applied to aged or fractured bones. Here we have developed a doxycycline-inducible strategy where Wnt7b is temporally induced in the bones of aged mice or during fracture healing. We report that forced expression of Wnt7b for 1 month starting at 15 months of age greatly stimulated trabecular and endosteal bone formation, resulting in a marked increase in bone mass. We further tested the effect of Wnt7b on bone healing in a murine closed femur fracture model. Induced expression of Wnt7b at the onset of fracture did not affect the initial cartilage formation but promoted mineralization of the subsequent bone callus. Thus, targeted delivery of Wnt7b to aged bones or fracture sites may be explored as a potential therapy.
文摘The effect of T6heat treatment on the fracture strength and reliability of AM60B alloy was studied.The tensile specimens were poured at three different temperatures of670,685and700?C for different holding times of5,10and15min.The fluidity test was also conducted to determine the fluidity length under different pouring temperatures and holding times.According to the results,the optimum pouring temperature and holding time were determined as685?C and10min,respectively.SEM fractography of the tensile specimens reveals that the entrained oxides and oxide-related porosities are the main factors responsible for the reduction of fracture strength under the non-optimal casting conditions.The Weibull statistical approach was used to quantify the scatter of fracture strength in as-cast and heat-treated conditions.For this purpose,T6schedule was applied to the specimens prepared under the optimal casting condition.It is found that,despite minor effect on the average fracture strength,T6heat treatment improves the reliability of castings,where the Weibull modulus is increased by75%.According to the microstructural and fractography observations,this improvement is related to the evolution of more uniform microstructure and the elimination of coarse brittleβ-particles in heat-treated samples.
基金The authors would also like to thank NIT,Durgapur RIG#2 project for financial support and the Director of National In-stitute of Technology Durgapur,India,for his continuous en-couragement.
文摘A near eutectic Al−12.6Si alloy was developed with 0.0wt%,2.0wt%,4.0wt%,and 6.0wt%Al−5Ti−1B master alloy.The micro-structural morphology,hardness,tensile strength,elongation,and fracture behaviour of the alloys were studied.The unmodified Al−12.6Si al-loy has an irregular needle and plate-like eutectic silicon(ESi)and coarse polygonal primary silicon(PSi)particles in the matrix-likeα-Al phase.The P_(Si),E_(Si),andα-Al morphology and volume fraction were changed due to the addition of the Al−5Ti−1B master alloy.The hardness,UTS,and elongation improved due to the microstructural modification.Nano-sized in-situ Al3Ti particles and ex-situ TiB_(2)particles caused the mi-crostructural modification.The fracture images of the developed alloys exhibit a ductile and brittle mode of fracture at the same time.The Al−5Ti−1B modified alloys have a more ductile mode of fracture and more dimples compared to the unmodified alloy.
基金the National Natural Science Foundation of China(51763006)the Foundation of Guangxi Key Laboratory of Structure Activity Relationship for Electronic Information Materials(201018-K)the Natural Science Foundation of Guangxi Province(2019GXNSFGA245005)for financial support for this work.
文摘The toughening of epoxy resin(EP)and the interlaminar toughening of carbon fiber reinforced composite(CF/EP)laminates have been widely concerned.In this work,the needle-likeγ-FeOOH nanoparticles were prepared by liquid phase deposition-air oxidation method,and then were calcined under different conditions to obtainγ-FeOOH andγ-Fe_(2)O_(3) hybrid nanoparticles(γ-FeOOH@Fe_(2)O_(3)).Effect of calcination condition ofγ-FeOOH@-Fe_(2)O_(3) and magnetic field assistance on fracture toughness(KIC)of EP was systematically investigated.Then the selectedγ-FeOOH@Fe_(2)O_(3) with the best toughening effect were used to improve the mode I interlaminar fracture toughness(GIC)of CF/EP laminate.The resultingγ-FeOOH@Fe_(2)O_(3) have a length of around 1μm,a diameter of around 100 nm and the Ms of 8.99–45.96 emu/g.After calcinated at 250℃ for 1 h,theγ-FeOOH@Fe_(2)O_(3) containing 24 wt%FeOOH and 76 wt%Fe_(2)O_(3) achieved the best toughening effect.Under a magnetic field of 0.09 T,the KIC of theγ-FeOOH@Fe_(2)O_(3)/EP composite(2.45 MPa m^(1/2)) is 81.7%and 66.7%higher than that of neat epoxy and the composite without magnetic field induction,respectively.Furthermore,the GIC of theγ-FeOOH@Fe_(2)O_(3)/CF/EP composite(0.914 kJ/m^(2)) is also significantly increased by 88.8%and 51.8%compared to that of CF/EP and the corresponding composite without magnetic field induction,respectively.
文摘The bonding characteristics of (0001)α2||(111)γ interface in two-phase TiAl alloy have beeninvestigated with the recursion method. The results of bond order integral and interaction energybetween atoms are presented. The effects of B on atoms bonding both in constituent phase andat the α2/γ interface have been studied. The correlation between the mechanical propertiesof the alloy and the bonding at the interface has been discussed. The results suggest that Bsegregation to the interface benefits the ductility. This is supported by the related experiment.
基金Sponsored by the Scientific Research and Development Projects of China Railway Corporation(Grant No.2017J011-C).
文摘This paper presents an experimental study on the static tensile test of resistance spot welding between 2.0 mm thick dissimilar 301L⁃DLT and Q235B in tensile⁃shear specimens with different welding nugget diameters.Force⁃displacement curves of the specimens were compared with simulation curves by the finite element software.The stress⁃strain distribution and fracture evolution process during the tensile process were analyzed.The hardness of the nugget was higher than that of the base material and the heat affected zone.Under static tensile load,the stress and strain in the spot welded joints increased exponentially with the increase of displacement,and the maximum stress was located at the nugget edge of the 301L plate loading side.The static tensile strength and plastic deformation of the spot welded joint failure by the nugget pulled⁃out fracture mode was better than that by the interface fracture mode.The critical nugget diameter of Q235B for the transition from nugget interfacial fracture to the pull⁃out fracture was 7.12 mm,and that of 301L was 7.81 mm,which was about 5√t.
基金Sponsored by the National Science Foundation of Anhui Province(Grant Nos.1508085ME84 and KJ2016A146)
文摘A number of Fe-Si-B amorphous ribbons are made by using melt spinning method. The microstructure, mechanical and other relevant properties of thin amorphous ribbons of Fe81.50B1.40Si7.95Nb7.37Cu1.73P0.05 alloy at room temperature were studied with several equipment including Differential scanning calorimetry (DSC), X-ray diffraction (XRD),Scanning electron microscope (SEM), and tensile machine. Significantly different microstructures exist between the free and wheel face of the thin amorphous ribbons. The free face is smooth while the wheel face is coarse with a great number of micro voids on the surface. Experimental results show that the tensile strength and elastic modulus of thethin amorphous ribbons at room temperature are 1951 MPa and 70 GPa. In addition, the amorphous ribbons possess reasonable tensile elongation (2.46%). The fracture appearance of amorphous ribbons of Fe81.50B1.40Si7.95Nb7.37Cu1.73P0.05 alloyis a mixed mode of ductile and brittle fracture which includes dimples and partial cleavage fracture similar to the crystalline materials. The dimple feature proves that it still has plastic characteristics on the micro scale.
基金Project(2012CB619503)supported by the Natioanl Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘To investigate the effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg (A357) alloy, some novel Al-7.0Si-0.55Mg alloys added with different amount of Al-STi-1B-RE grain refiner with different RE composition were prepared by vacuum-melting. The microstructure and fracture behavior of the AI-7.0Si-0.55Mg alloys with the grain refiners were observed by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and the mechanical properties of the alloys were tested in mechanical testing machine at room temperature. The observation of AI-Ti-B-RE morphology and internal structure of the particles reveals that it exhibits a TiAl3/Ti2Al20RE core-shell structure via heterogeneous TiB2 nuclei. The tensile strength of Al-7.0Si-0.55Mg alloys with Al-5Ti-1B-3.0RE grain refiner reaches the peak value at the same addition (0.2%) of grain refiner.