Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge t...Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas–Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas–Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly,the explicit one-and two-soliton solutions are presented and their dynamical behaviors are shown graphically.展开更多
This article presents the construction of a nonlocal Hirota equation with variable coefficients and its Darboux transformation.Using zero-seed solutions,1-soliton and 2-soliton solutions of the equation are constructe...This article presents the construction of a nonlocal Hirota equation with variable coefficients and its Darboux transformation.Using zero-seed solutions,1-soliton and 2-soliton solutions of the equation are constructed through the Darboux transformation,along with the expression for N-soliton solutions.Influence of coefficients that are taken as a function of time instead of a constant,i.e.,coefficient functionδ(t),on the solutions is investigated by choosing the coefficient functionδ(t),and the dynamics of the solutions are analyzed.This article utilizes the Lax pair to construct infinite conservation laws and extends it to nonlocal equations.The study of infinite conservation laws for nonlocal equations holds significant implications for the integrability of nonlocal equations.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12326305,11931017,and 12271490)the Excellent Youth Science Fund Project of Henan Province(Grant No.242300421158)+2 种基金the Natural Science Foundation of Henan Province(Grant No.232300420119)the Excellent Science and Technology Innovation Talent Support Program of ZUT(Grant No.K2023YXRC06)Funding for the Enhancement Program of Advantageous Discipline Strength of ZUT(2022)。
文摘Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas–Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas–Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly,the explicit one-and two-soliton solutions are presented and their dynamical behaviors are shown graphically.
基金supported by the National Natural Science Foundation of China (Grant No.11505090)Liaocheng University Level Science and Technology Research Fund (Grant No.318012018)+2 种基金Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology (Grant No.319462208)Research Award Foundation for Outstanding Young Scientists of Shandong Province (Grant No.BS2015SF009)the Doctoral Foundation of Liaocheng University (Grant No.318051413)。
文摘This article presents the construction of a nonlocal Hirota equation with variable coefficients and its Darboux transformation.Using zero-seed solutions,1-soliton and 2-soliton solutions of the equation are constructed through the Darboux transformation,along with the expression for N-soliton solutions.Influence of coefficients that are taken as a function of time instead of a constant,i.e.,coefficient functionδ(t),on the solutions is investigated by choosing the coefficient functionδ(t),and the dynamics of the solutions are analyzed.This article utilizes the Lax pair to construct infinite conservation laws and extends it to nonlocal equations.The study of infinite conservation laws for nonlocal equations holds significant implications for the integrability of nonlocal equations.