期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
广义AKNS系统及其Darboux阵
1
作者 李宏恩 《周口师范学院学报》 CAS 2016年第2期48-50,共3页
超越AKNS系统的孤子方程难以用Darboux变换进行求解.针对此类情形,提出了广义AKNS系统的概念,通过Lax对的可积条件,证明了广义AKNS系统与AKNS系统有相同形式的Darboux阵λI-S.
关键词 孤立子 LAX对 AKNS系统 广义AKNS系统 darboux阵
下载PDF
高阶KDV方程的BCKLUND变换
2
作者 郭福奎 《山东矿业学院学报》 CAS 1992年第2期190-195,共6页
应用Darboux阵方法,导出了高价Kdv方程的Backlund变换。
关键词 darboux阵 变换 高阶 KDV方程
下载PDF
Coupled Modified Korteweg-de Vries Lattice in (2+1) Dimensions and Soliton Solutions 被引量:2
3
作者 YANG Hong-Xiang LI Xiu-Zhen +1 位作者 XU Xi-Xiang DING Hai-Yong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第4期581-586,共6页
The coupled semi-discrete modified Korteweg-de Vries equation in (2+1)-dimensions is proposed, it is shown that it, can be decomposed into two (1+1)-dimensional differential-difference equations belonging to mKd... The coupled semi-discrete modified Korteweg-de Vries equation in (2+1)-dimensions is proposed, it is shown that it, can be decomposed into two (1+1)-dimensional differential-difference equations belonging to mKdV lattice hierarchy by considering a discrete isospeetral problem. A Darboux transformation is set up for the resulting (2+1)- dimensional lattice soliton equation with the help of gauge transformations of Lax pairs. As an illustration by example, the soliton solutions of the mKdV lartice equation in (2+1)-dimensions are explicitly given, 展开更多
关键词 modified Korteweg-de Vries lattice darboux transformation soliton solutions
下载PDF
Conservation Laws and Darboux Transformation for Sharma-Tasso-Olver Equation
4
作者 薛波 吴晨明 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第9期317-322,共6页
A hierarchy of new nonlinear evolution equations associated with a 2 x 2 matrix spectral problem is derived. One of the nontrivial equations in this hierarchy is the famous Sharma-Tasso-Olver equation. Then infinitely... A hierarchy of new nonlinear evolution equations associated with a 2 x 2 matrix spectral problem is derived. One of the nontrivial equations in this hierarchy is the famous Sharma-Tasso-Olver equation. Then infinitely many conservation laws of this equation are deduced. Darboux transformation for the Sharma-Tasso-Olver equation is constructed with the aid of a gauge transformation. 展开更多
关键词 Sharma-Tasso-Olver equation infinitely many conservation laws darboux transformation ex-plicit solution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部