期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Melting effect and Cattaneo-Christov heat flux in fourth-grade material flow through a Darcy-Forchheimer porous medium
1
作者 T.HAYAT K.MUHAMMAD A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第12期1787-1798,共12页
The melting phenomenon in two-dimensional(2 D)flow of fourth-grade material over a stretching surface is explored.The flow is created via a stretching surface.A Darcy-Forchheimer(D-F)porous medium is considered in the... The melting phenomenon in two-dimensional(2 D)flow of fourth-grade material over a stretching surface is explored.The flow is created via a stretching surface.A Darcy-Forchheimer(D-F)porous medium is considered in the flow field.The heat transport is examined with the existence of the Cattaneo-Christov(C-C)heat flux.The fourth-grade material is electrically conducting subject to an applied magnetic field.The governing partial differential equations(PDEs)are reduced into ordinary differential equations(ODEs)by appropriate transformations.The solutions are constructed analytically through the optimal homotopy analysis method(OHAM).The fluid velocity,temperature,and skin friction are examined under the effects of various involved parameters.The fluid velocity increases with higher material parameters and velocity ratio parameter while decreases with higher magnetic parameter,porosity parameter,and Forchheimer number.The fluid temperature is reduced with higher melting parameter while boosts against higher Prandtl number,magnetic parameter,and thermal relaxation parameter.Furthermore,the skin friction coefficient decreases against higher melting and velocity ratio parameters while increases against higher material parameters,thermal relaxation parameter,and Forchheimer number. 展开更多
关键词 melting heat darcy-forchheimer(d-f)porous medium magnetohydrodynamics(MHD) Cattaneo-Christov(C-C)heat flux fourth-grade fluid optimal homotopy analysis method(OHAM)
下载PDF
Darcy-Forchheimer flow with nonlinear mixed convection
2
作者 T.HAYAT F.HAIDER A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第11期1685-1696,共12页
An analysis of the mixed convective flow of viscous fluids induced by a nonlinear inclined stretching surface is addressed.Heat and mass transfer phenomena are analyzed with additional effects of heat generation/absor... An analysis of the mixed convective flow of viscous fluids induced by a nonlinear inclined stretching surface is addressed.Heat and mass transfer phenomena are analyzed with additional effects of heat generation/absorption and activation energy,respectively.The nonlinear Darcy-Forchheimer relation is deliberated.The dimensionless problem is obtained through appropriate transformations.Convergent series solutions are obtained by utilizing an optimal homotopic analysis method(OHAM).Graphs depicting the consequence of influential variables on physical quantities are presented.Enhancement in the velocity is observed through the local mixed convection parameter while an opposite trend of the concentration field is noted for the chemical reaction rate parameter. 展开更多
关键词 darcy-forchheimer porous space nonlinear mixed convection viscous fluid heat generation/absorption activation energy optimal homotopic analysis method(OHAM)
下载PDF
Impact of melting heat transfer in the time-dependent squeezing nanofluid flow containing carbon nanotubes in a Darcy-Forchheimer porous media with Cattaneo-Christov heat flux
3
作者 Muhammad Ramzan Nomana Abid +1 位作者 Dianchen Lu Iskander Tlili 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第8期154-164,共11页
This study aims to investigate the time-dependent squeezing of nanofluid flow, comprising carbon nanotubes of dual nature, e.g. single-walled carbon nanotubes, and multi-walled carbon nanotubes,between two parallel di... This study aims to investigate the time-dependent squeezing of nanofluid flow, comprising carbon nanotubes of dual nature, e.g. single-walled carbon nanotubes, and multi-walled carbon nanotubes,between two parallel disks. Numerical simulations of the proposed novel model are conducted,accompanied by Cattaneo-Christov heat flux in a Darcy-Forchheimer permeable media. Additional impacts of homogeneous–heterogeneous reactions are also noted, including melting heat. A relevant transformation procedure is implemented for the transition of partial differential equations to the ordinary variety. A computer software-based MATLAB function, bvp4c, is implemented to handle the envisioned mathematical model. Sketches portraying impacts on radial velocity, temperature, and concentration of the included parameters are given, and deliberated upon. Skin friction coefficient and local Nusselt number are evaluated via graphical illustrations. It is observed that the local inertia coefficient has an opposite impact on radial velocity and temperature field. It is further perceived that melting and radiation parameters demonstrate a retarding effect on temperature profile. 展开更多
关键词 melting heat transfer darcy-forchheimer porous media Cattaneo-Christov heat flux carbon nanotubes squeezing flow homogeneous–heterogeneous reactions
原文传递
Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation
4
作者 M.Ijaz Khan Seifedine Kadry +1 位作者 Yuming Chu M.Waqas 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第3期17-25,共9页
The prime objective of the present communication is to examine the entropy-optimized second order velocity slip Darcy–Forchheimer hybrid nanofluid flow of viscous material between two rotating disks.Electrical conduc... The prime objective of the present communication is to examine the entropy-optimized second order velocity slip Darcy–Forchheimer hybrid nanofluid flow of viscous material between two rotating disks.Electrical conducting flow is considered and saturated through Darcy–Forchheimer relation.Both the disks are rotating with different angular frequencies and stretches with different rates.Here graphene oxide and titanium dioxide are considered for hybrid nanoparticles and water as a continuous phase liquid.Joule heating,heat generation/absorption and viscous dissipation effects are incorporated in the mathematical modeling of energy expression.Furthermore,binary chemical reaction with activation energy is considered.The total entropy rate is calculated in the presence of heat transfer irreversibility,fluid friction irreversibility,Joule heating irreversibility,porosity irreversibility and chemical reaction irreversibility through thermodynamics second law.The nonlinear governing equations are first converted into ordinary differential equations through implementation of appropriate similarity transformations and then numerical solutions are calculated through Built-in-Shooting method.Characteristics of sundry flow variables on the entropy generation rate,velocity,concentration,Bejan number,temperature are discussed graphically for both graphene oxide and titanium dioxide hybrid nanoparticles.The engineering interest like skin friction coefficient and Nusselt number are computed numerically and presented through tables.It is noticed from the obtained results that entropy generation rate and Bejan number have similar effects versus diffusion parameter.Also entropy generation rate is more against the higher Brinkman number. 展开更多
关键词 darcy-forchheimer porous medium Titanium dioxide and graphene oxide nanoparticles Second order velocity slip Convective boundary condition Activation energy Heat generation/absorption
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部