期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Geometric origin of intrinsic dark counts in superconducting nanowire single-photon detectors 被引量:1
1
作者 Xingyu Zhang Xiaofu Zhang +10 位作者 Jia Huang Can Yang Lixing You Xiaoyu Liu Peng Hu You Xiao Wenying Zhang Yongliang Wang Lingyun Li Zhen Wang Hao Li 《Superconductivity》 2022年第1期45-51,共7页
The dark count is one of the key physical issues for superconducting nanowire single-photon detectors(SNSPDs)that limits various applications for optical quantum information and classical optics.When the bias current ... The dark count is one of the key physical issues for superconducting nanowire single-photon detectors(SNSPDs)that limits various applications for optical quantum information and classical optics.When the bias current approaches the switching current of SNSPDs,the dark count is actually dominated by the intrinsic dark counts(iDCs).However,the origin of iDCs and its relation to constrictions remains unclear for practical SNSPDs.We herein systematically characterize the iDCs of the SNSPDs with and without artificial geometric constrictions by applying the differential readout method.For these devices with constrictions,we have observed distinct Gaussian distributions in the temporal distribution of iDCs,in which the time difference between the distributions is consistent with the geometric distance between constrictions,and the rates of iDCs produced by each constriction are in good agreement with constrictions'widths.With respect to practical SNSPDs,surprisingly,we also observe several Gaussian distributions in the temporal domain and it shows no significant dependence on the devices’sizes,demonstrating that the iDCs of SNSPDs are mainly dominated by a few specific constrictions. 展开更多
关键词 Superconducting nanowire Single-photon detector dark count Differential readout
原文传递
Vacuum Correlations, Detector Efficiency Fluctuations and Classical Dynamic Violations of CH-Inequality
2
作者 Gianpaolo Bei 《Journal of Applied Mathematics and Physics》 2023年第6期1677-1692,共16页
We study in this paper the possible influence of vacuum fluctuations on photo detection and its background noise in Bell tests. We analyze its consequences on the standard statistical analysis of data showing that it ... We study in this paper the possible influence of vacuum fluctuations on photo detection and its background noise in Bell tests. We analyze its consequences on the standard statistical analysis of data showing that it is not fulfilled anymore the conventional hypothesis of a Poisson like probability density distribution of single photodetection events. We assume that vacuum fluctuations are due to real and measurable fluctuating fields, as recently confirmed experimentally, and that their non null correlations outside the light cone contribute to photon coincidence rates making them time dependent. We introduce a generalized Bell like correlation function which contains a new term due to supposed vacuum induced photon counting events. We deduce then a generalization of CH-inequality which takes in account the effect of these vacuum electric fields on detector efficiency. We predict an apparatus temperature fluctuations during photon detection which we suggest could be observed by looking for colored noise thermal emission of the photodetectors, generalizing the standard white noise prediction of C.S.L. models on wave function collapse postulate. We discuss an experimental test of this prediction, based on the idea of inducing a thermal wave on the whole quantum detectors, aimed to observe time dependent deviations from standard stationary statistical predictions of Quantum Mechanics. 展开更多
关键词 Electric Vacuum Correlations dark counts Detector Efficiency Fluctuations Detector Thermal Emission Temperature Dependent CH-Inequality
下载PDF
Study of the influence of virtual guard ring width on the performance of SPAD detectors in 180 nm standard CMOS technology
3
作者 Danlu Liu Ming Li +3 位作者 Tang Xu Jie Dong Yuming Fang Yue Xu 《Journal of Semiconductors》 EI CAS CSCD 2023年第11期83-88,共6页
The influence of the virtual guard ring width(GRW)on the performance of the p-well/deep n-well single-photon avalanche diode(SPAD)in a 180 nm standard CMOS process was investigated.TCAD simulation demonstrates that th... The influence of the virtual guard ring width(GRW)on the performance of the p-well/deep n-well single-photon avalanche diode(SPAD)in a 180 nm standard CMOS process was investigated.TCAD simulation demonstrates that the electric field strength and current density in the guard ring are obviously enhanced when GRW is decreased to 1μm.It is experimentally found that,compared with an SPAD with GRW=2μm,the dark count rate(DCR)and afterpulsing probability(AP)of the SPAD with GRW=1μm is significantly increased by 2.7 times and twofold,respectively,meanwhile,its photon detection probability(PDP)is saturated and hard to be promoted at over 2 V excess bias voltage.Although the fill factor(FF)can be enlarged by reducing GRW,the dark noise of devices is negatively affected due to the enhanced trap-assisted tunneling(TAT)effect in the 1μm guard ring region.By comparison,the SPAD with GRW=2μm can achieve a better trade-off between the FF and noise performance.Our study provides a design guideline for guard rings to realize a low-noise SPAD for large-array applications. 展开更多
关键词 single-photon avalanche diode(SPAD) virtual guard ring dark count rate(DCR) photon detection probability(PDP) afterpulsing probability(AP)
下载PDF
High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K 被引量:4
4
作者 Tingting He Xiaohong Yang +2 位作者 Yongsheng Tang Rui Wang Yijun Liu 《Journal of Semiconductors》 EI CAS CSCD 2022年第10期56-63,共8页
Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication.However,even with well-designed struct... Planar semiconductor InGaAs/InP single photon avalanche diodes with high responsivity and low dark count rate are preferred single photon detectors in near-infrared communication.However,even with well-designed structures and well-con-trolled operational conditions,the performance of InGaAs/InP SPADs is limited by the inherent characteristics of avalanche pro-cess and the growth quality of InGaAs/InP materials.It is difficult to ensure high detection efficiency while the dark count rate is controlled within a certain range at present.In this paper,we fabricated a device with a thick InGaAs absorption region and an anti-reflection layer.The quantum efficiency of this device reaches 83.2%.We characterized the single-photon performance of the device by a quenching circuit consisting of parallel-balanced InGaAs/InP single photon detectors and single-period sinus-oidal pulse gating.The spike pulse caused by the capacitance effect of the device is eliminated by using the characteristics of parallel balanced common mode signal elimination,and the detection of small avalanche pulse amplitude signal is realized.The maximum detection efficiency is 55.4%with a dark count rate of 43.8 kHz and a noise equivalent power of 6.96×10^(−17 )W/Hz^(1/2) at 247 K.Compared with other reported detectors,this SPAD exhibits higher SPDE and lower noise-equivalent power at a higher cooling temperature. 展开更多
关键词 single period sinusoidal pulse InGaAs/InP single photon avalanche diode parallel balanced photon detection effi-ciency dark count rate noise-equivalent power
下载PDF
Pulse-gated mode of commercial superconducting nanowire single photon detectors
5
作者 刘帆 江木生 +2 位作者 陆宜飞 汪洋 鲍皖苏 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期144-150,共7页
High detection efficiency and low intrinsic dark count rate are two advantages of superconducting nanowire single photon detectors(SNSPDs).However,the stray photons penetrated into the fiber would cause the extrinsic ... High detection efficiency and low intrinsic dark count rate are two advantages of superconducting nanowire single photon detectors(SNSPDs).However,the stray photons penetrated into the fiber would cause the extrinsic dark count rate,owing to the free running mode of SNSPDs.In order to improve the performance of SNSPDs in realistic scenarios,stray photons should be investigated and suppression methods should be adopted.In this study,we demonstrate the pulsegated mode,with 500 kHz gating frequency,of a commercial SNSPD system for suppressing the response of stray photons about three orders of magnitude than its free-running counterpart on the extreme test conditions.When we push the gating frequency to 8 MHz,the dark count rate still keeps under 4% of free-running mode.In experiments,the intrinsic dark count rate is also suppressed to 4.56 × 10^(-2) counts per second with system detection efficiency of 76.4372%.Furthermore,the time-correlated single-photon counting analysis also approves the validity of our mode in suppressing the responses of stray photons. 展开更多
关键词 quantum detector superconducting nanowire pulse gated dark count rate
下载PDF
Numerical analysis of In_(0.53) Ga_(0.47) As/InP single photon avalanche diodes
6
作者 周鹏 李淳飞 +2 位作者 廖常俊 魏正军 袁书琼 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期561-567,共7页
A rigorous theoretical model for Ino.53Gao.47As/InP single photon avalanche diode is utilized to investigate the dependences of single photon quantum efficiency and dark count probability on structure and operation co... A rigorous theoretical model for Ino.53Gao.47As/InP single photon avalanche diode is utilized to investigate the dependences of single photon quantum efficiency and dark count probability on structure and operation condition. In the model, low field impact ionizations in charge and absorption layers are allowed, while avalanche breakdown can occur only in the multiplication layer. The origin of dark counts is discussed and the results indicate that the dominant mechanism that gives rise to dark counts depends on both device structure and operating condition. When the multiplication layer is thicker than a critical thickness or the temperature is higher than a critical value, generation-recombination in the absorption layer is the dominative mechanism; otherwise band-to-band tunneling in the multiplication layer dominates the dark counts. The thicknesses of charge and multiplication layers greatly affect the dark count and the peak single photon quantum efficiency and increasing the multiplication layer width may reduce the dark count probability and increase the peak single photon quantum efficiency. However, when the multiplication layer width exceeds 1 μm, the peak single photon quantum efficiency increases slowly and it is finally saturated at the quantum efficiency of the single photon avalanche diodes. 展开更多
关键词 single photon avalanche diodes gate-mode single photon quantum efficiency dark count probability
下载PDF
Comparative studies of silicon photomultipliers and traditional vacuum photomultiplier tubes 被引量:2
7
作者 石峰 吕军光 +24 位作者 卢红 王焕玉 马宇蒨 胡涛 周莉 蔡啸 孙丽君 俞伯祥 方建 谢宇广 安正华 王志刚 高旻 李新乔 徐岩冰 王平 孙希磊 章爱武 薛镇 刘宏邦 王晓东 赵小芸 郑阳恒 孟祥承 王辉 《Chinese Physics C》 SCIE CAS CSCD 2011年第1期50-55,共6页
Silicon photomultipliers (SiPMs) are a new generation of semiconductor-based photon counting devices with the merits of low weight, low power consumption and low voltage operation, promising to meet the needs of spa... Silicon photomultipliers (SiPMs) are a new generation of semiconductor-based photon counting devices with the merits of low weight, low power consumption and low voltage operation, promising to meet the needs of space particle physics experiments. In this paper, comparative studies of SiPMs and traditional vacuum photomultiplier tubes (PMTs) have been performed regarding the basic properties of dark currents, dark counts and excess noise factors. The intrinsic optical erosstalk effect of SiPMs was evaluated. 展开更多
关键词 silicon photomultiplier SIPM PMT dark current dark counts excess noise factor
原文传递
Characterization of large area photomultiplier ETL 9357FLB for liquid argon detector 被引量:1
8
作者 杜迎帅 岳骞 +10 位作者 刘义保 陈庆豪 李金 程建平 康克军 李元景 李玉兰 马豪 幸浩洋 余训臻 曾志 《Chinese Physics C》 SCIE CAS CSCD 2014年第7期88-91,共4页
The China Dark Matter Experiment (CDEX) Collaboration will carry out a direct search for weakly interacting massive particles with germanium detectors. Liquid argon will be utilized as an anti-Compton and cooling ma... The China Dark Matter Experiment (CDEX) Collaboration will carry out a direct search for weakly interacting massive particles with germanium detectors. Liquid argon will be utilized as an anti-Compton and cooling material for the germanium detectors. A low-background and large-area photomultiplier tube (PMT) immersed in liquid argon will be used to read out the light signal from the argon. In this paper we have carried out a careful evaluation on the performance of the PMT operating at both room and cryogenic temperatures. Based on the single photoelectron response model, the absolute gain and resolution of the PMT were measured. This has laid a foundation for PMT selection, calibration and signal analysis in the forthcoming CDEX experiments. 展开更多
关键词 dark matter PMT SER gain dark count
原文传递
Evaluation of new large area PMT with high quantum efficiency 被引量:1
9
作者 雷祥翠 衡月昆 +16 位作者 钱森 夏经铠 刘术林 吴智 闫保军 徐美杭 王铮 李小男 阮向东 王小状 杨玉真 王文文 方灿 罗凤姣 梁静静 杨露萍 杨彪 《Chinese Physics C》 SCIE CAS CSCD 2016年第2期54-59,共6页
The neutrino detector of the Jiangmen Underground Neutrino Observatory(JUNO) is designed to use20 kilotons of liquid scintillator and approximately 16000 20 inch photomultipliers(PMTs).One of the options is to use... The neutrino detector of the Jiangmen Underground Neutrino Observatory(JUNO) is designed to use20 kilotons of liquid scintillator and approximately 16000 20 inch photomultipliers(PMTs).One of the options is to use the 20 inch R12860 PMT with high quantum efficiency which has recently been developed by Hamamatsu Photonics.The performance of the newly developed PMT preproduction samples is evaluated.The results show that its quantum efficiency is 30%at 400 nm.Its Peak/Valley(P/V) ratio for the single photoelectron is 4.75 and the dark count rate is 27 kHz at the threshold of 3 mV while the gain is at 1 × 10^7.The transit time spread of a single photoelectron is 2.86 ns.Generally the performances of this new 20 inch PMT are improved over the old one of R3600. 展开更多
关键词 PMT quantum efficiency gain anode dark count rate
原文传递
Study of silicon pixel sensor for synchrotron radiation detection 被引量:1
10
作者 李贞杰 贾云丛 +2 位作者 胡凌飞 刘鹏 殷华湘 《Chinese Physics C》 SCIE CAS CSCD 2016年第3期90-98,共9页
The silicon pixel sensor(SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection(SRD). In this paper, the design, fabrication, and characterizat... The silicon pixel sensor(SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection(SRD). In this paper, the design, fabrication, and characterization of SPSs for single beam X-ray photon detection is reported. The designed pixel sensor is a p+-in-n structure with guard-ring structures operated in full-depletion mode and is fabricated on 4-inch, N type, 320 μm thick, high-resistivity silicon wafers by a general Si planar process. To achieve high energy resolution of X-rays and obtain low dark current and high breakdown voltage as well as appropriate depletion voltage of the SPS, a series of technical optimizations of device structure and fabrication process are explored. With optimized device structure and fabrication process,excellent SPS characteristics with dark current of 2 n A/cm^2, full depletion voltage 〈 50 V and breakdown voltage〉 150 V are achieved. The fabricated SPSs are wire bonded to ASIC circuits and tested for the performance of X-ray response to the 1W2 B synchrotron beam line of the Beijing Synchrotron Radiation Facility. The measured S-curves for SRD demonstrate a high discrimination for different energy X-rays. The extracted energy resolution is high(〈 20% for X-ray photon energy 〉 10 keV) and the linear properties between input photo energy and the equivalent generator amplitude are well established. It confirmed that the fabricated SPSs have a good energy linearity and high count rate with the optimized technologies. The technology is expected to have a promising application in the development of a large scale SRD system for the Beijing Advanced Photon Source. 展开更多
关键词 synchrotron X-ray silicon pixel sensor dark current energy resolution count rate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部