The present study examined changes in retinal tyrosine hydroxylase (TH) expression in rats having undergone optic nerve transection and housed under a normal day/night cycle or in the dark. The aim was to investigat...The present study examined changes in retinal tyrosine hydroxylase (TH) expression in rats having undergone optic nerve transection and housed under a normal day/night cycle or in the dark. The aim was to investigate the effects of amacrine cells on axonal regeneration in retinal ganglion cells and on the synapses that transmit visual signals. The results revealed that retinal TH expression gradually decreased following optic nerve transection in rats housed under a normal day/night cycle reaching a minimum at 5 days. In contrast, retinal TH expression decreased to a minimum at 1 day following optic nerve transection in dark reared rats, gradually increasing afterward and reaching a normal level at 5 7 days. The number of TH-positive synaptic particles correlated with the TH levels indicating that dark rearing can help maintain TH expression during the synaptic degeneration stage (5 7 days after optic nerve injury) in retinal amacrine cells.展开更多
基金supported by the National Natural Science Foundation of China (Influence of visual deprivation on bipolar cell synaptic formation and degeneration following opticnerve transection), No. 30671100
文摘The present study examined changes in retinal tyrosine hydroxylase (TH) expression in rats having undergone optic nerve transection and housed under a normal day/night cycle or in the dark. The aim was to investigate the effects of amacrine cells on axonal regeneration in retinal ganglion cells and on the synapses that transmit visual signals. The results revealed that retinal TH expression gradually decreased following optic nerve transection in rats housed under a normal day/night cycle reaching a minimum at 5 days. In contrast, retinal TH expression decreased to a minimum at 1 day following optic nerve transection in dark reared rats, gradually increasing afterward and reaching a normal level at 5 7 days. The number of TH-positive synaptic particles correlated with the TH levels indicating that dark rearing can help maintain TH expression during the synaptic degeneration stage (5 7 days after optic nerve injury) in retinal amacrine cells.