We present a quantum-theoretical treatment of cavity linewidth narrowing with intracavity electromagnetically in- duced transparency (EIT). By means of intracavity EIT, the photons in the cavity are in the form of c...We present a quantum-theoretical treatment of cavity linewidth narrowing with intracavity electromagnetically in- duced transparency (EIT). By means of intracavity EIT, the photons in the cavity are in the form of cavity polaritons: bright-state polariton and dark-state polariton. Strong coupling of the bright-state polariton to the excited state induces an effect known as vacuum Rabi splitting, whereas the dark-state polariton decoupled from the excited state induces a narrow cavity transmission window. Our analysis would provide a quantum theory of linewidth narrowing with a quantum field pulse.展开更多
We investigate the light propagation dynamics in ultra-cold Rydberg medium with inverted-Y configuration based on the superatom theory.It is viable to store light information in two types of atomic spin coherence(triv...We investigate the light propagation dynamics in ultra-cold Rydberg medium with inverted-Y configuration based on the superatom theory.It is viable to store light information in two types of atomic spin coherence(trivial spin coherence and Rydberg spin coherence),which makes the system a prospective platform for versatile light manipulation.A normal feature is to realize efficient light storage with simultaneous resonant control fields applied.An intriguing feature is to split light into two beams with different intensities and statistical properties if the control fields are applied separately.The beam of light retrieved from the Rydberg spin coherence is severely attenuated and shows anti-bunching character accompanied by the cooperative optical nonlinearity.Moreover,generation and manipulation of beating signal are achievable by applying the non-resonant control fields.展开更多
基金supported by the National Natural Science Foundation of China(Grants Nos.11204080,11274112,91321101,and 61275215)the Fundamental Research Fund for the Central Universities of China(Grants No.WM1313003)
文摘We present a quantum-theoretical treatment of cavity linewidth narrowing with intracavity electromagnetically in- duced transparency (EIT). By means of intracavity EIT, the photons in the cavity are in the form of cavity polaritons: bright-state polariton and dark-state polariton. Strong coupling of the bright-state polariton to the excited state induces an effect known as vacuum Rabi splitting, whereas the dark-state polariton decoupled from the excited state induces a narrow cavity transmission window. Our analysis would provide a quantum theory of linewidth narrowing with a quantum field pulse.
基金Project supported by the National Natural Science Foundation of China(Grant No.12104107)the Natural Science Foundation of Guangxi Province,China(Grant No.AD19245180)+2 种基金the Natural Science Foundation of Jilin ProvinceChina(Grant No.20220101009JC)the“Yucai Project”of Guangxi Normal University。
文摘We investigate the light propagation dynamics in ultra-cold Rydberg medium with inverted-Y configuration based on the superatom theory.It is viable to store light information in two types of atomic spin coherence(trivial spin coherence and Rydberg spin coherence),which makes the system a prospective platform for versatile light manipulation.A normal feature is to realize efficient light storage with simultaneous resonant control fields applied.An intriguing feature is to split light into two beams with different intensities and statistical properties if the control fields are applied separately.The beam of light retrieved from the Rydberg spin coherence is severely attenuated and shows anti-bunching character accompanied by the cooperative optical nonlinearity.Moreover,generation and manipulation of beating signal are achievable by applying the non-resonant control fields.