Background:Erzhu Erchen decoction(EZECD),which is based on Erchen decoction and enhanced with Atractylodes lancea and Atractylodes macrocephala,is widely used for the treatment of dampness and heat(The clinical manife...Background:Erzhu Erchen decoction(EZECD),which is based on Erchen decoction and enhanced with Atractylodes lancea and Atractylodes macrocephala,is widely used for the treatment of dampness and heat(The clinical manifestations of Western medicine include thirst,inability to drink more,diarrhea,yellow urine,red tongue,et al.)internalized disease.Nevertheless,the mechanism of EZECD on damp-heat internalized Type 2 diabetes(T2D)remains unknown.We employed data mining,pharmacology databases and experimental verification to study how EZECD treats damp-heat internalized T2D.Methods:The main compounds or genes of EZECD and damp-heat internalized T2D were obtained from the pharmacology databases.Succeeding,the overlapped targets of EZECD and damp-heat internalized T2D were performed by the Gene Ontology,kyoto encyclopedia of genes and genomes analysis.And the compound-disease targets-pathway network were constructed to obtain the hub compound.Moreover,the hub genes and core related pathways were mined with weighted gene co-expression network analysis based on Gene Expression Omnibus database,the capability of hub compound and genes was valid in AutoDock 1.5.7.Furthermore,and violin plot and gene set enrichment analysis were performed to explore the role of hub genes in damp-heat internalized T2D.Finally,the interactions of hub compound and genes were explored using Comparative Toxicogenomics Database and quantitative polymerase chain reaction.Results:First,herb-compounds-genes-disease network illustrated that the hub compound of EZECD for damp-heat internalized T2D could be quercetin.Consistently,the hub genes were CASP8,CCL2,and AHR according to weighted gene co-expression network analysis.Molecular docking showed that quercetin could bind with the hub genes.Further,gene set enrichment analysis and Gene Ontology represented that CASP8,or CCL2,is negatively involved in insulin secretion response to the TNF or lipopolysaccharide process,and AHR or CCL2 positively regulated lipid and atherosclerosis,and/or including NOD-like receptor signaling pathway,and TNF signaling pathway.Ultimately,the quantitative polymerase chain reaction and western blotting analysis showed that quercetin could down-regulated the mRNA and protein experssion of CASP8,CCL2,and AHR.It was consistent with the results in Comparative Toxicogenomics Database databases.Conclusion:These results demonstrated quercetin could inhibit the expression of CASP8,CCL2,AHR in damp-heat internalized T2D,which improves insulin secretion and inhibits lipid and atherosclerosis,as well as/or including NOD-like receptor signaling pathway,and TNF signaling pathway,suggesting that EZECD may be more effective to treat damp-heat internalized T2D.展开更多
Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landsli...Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.展开更多
Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making.However,imbalanced target variables within big data present technical challen...Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making.However,imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics,limiting their overall effectiveness.This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers(SLCs)and evaluates their performance in data-driven decision-making.The evaluation uses various metrics,with a particular focus on the Harmonic Mean Score(F-1 score)on an imbalanced real-world bank target marketing dataset.The findings indicate that grid-search random forest and random-search random forest excel in Precision and area under the curve,while Extreme Gradient Boosting(XGBoost)outperforms other traditional classifiers in terms of F-1 score.Employing oversampling methods to address the imbalanced data shows significant performance improvement in XGBoost,delivering superior results across all metrics,particularly when using the SMOTE variant known as the BorderlineSMOTE2 technique.The study concludes several key factors for effectively addressing the challenges of supervised learning with imbalanced datasets.These factors include the importance of selecting appropriate datasets for training and testing,choosing the right classifiers,employing effective techniques for processing and handling imbalanced datasets,and identifying suitable metrics for performance evaluation.Additionally,factors also entail the utilisation of effective exploratory data analysis in conjunction with visualisation techniques to yield insights conducive to data-driven decision-making.展开更多
Although big data is publicly available on water quality parameters,virtual simulation has not yet been adequately adapted in environmental chemistry research.Digital twin is different from conventional geospatial mod...Although big data is publicly available on water quality parameters,virtual simulation has not yet been adequately adapted in environmental chemistry research.Digital twin is different from conventional geospatial modeling approaches and is particularly useful when systematic laboratory/field experiment is not realistic(e.g.,climate impact and water-related environmental catastrophe)or difficult to design and monitor in a real time(e.g.,pollutant and nutrient cycles in estuaries,soils,and sediments).Data-driven water research could realize early warning and disaster readiness simulations for diverse environmental scenarios,including drinking water contamination.展开更多
In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf ava...In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf availability is an essential indicator of shelf data management and closely relates to customer purchase behavior.RFM(recency,frequency,andmonetary)patternmining is a powerful tool to evaluate the value of customer behavior.However,the existing RFM patternmining algorithms do not consider the quarterly nature of goods,resulting in unreasonable shelf availability and difficulty in profit-making.To solve this problem,we propose a quarterly RFM mining algorithmfor On-shelf products named OS-RFM.Our algorithmmines the high recency,high frequency,and high monetary patterns and considers the period of the on-shelf goods in quarterly units.We conducted experiments using two real datasets for numerical and graphical analysis to prove the algorithm’s effectiveness.Compared with the state-of-the-art RFM mining algorithm,our algorithm can identify more patterns and performs well in terms of precision,recall,and F1-score,with the recall rate nearing 100%.Also,the novel algorithm operates with significantly shorter running times and more stable memory usage than existing mining algorithms.Additionally,we analyze the sales trends of products in different quarters and seasonal variations.The analysis assists businesses in maintaining reasonable on-shelf availability and achieving greater profitability.展开更多
Bioinformatic analysis of large and complex omics datasets has become increasingly useful in modern day biology by providing a great depth of information,with its application to neuroscience termed neuroinformatics.Da...Bioinformatic analysis of large and complex omics datasets has become increasingly useful in modern day biology by providing a great depth of information,with its application to neuroscience termed neuroinformatics.Data mining of omics datasets has enabled the generation of new hypotheses based on differentially regulated biological molecules associated with disease mechanisms,which can be tested experimentally for improved diagnostic and therapeutic targeting of neurodegenerative diseases.Importantly,integrating multi-omics data using a systems bioinformatics approach will advance the understanding of the layered and interactive network of biological regulation that exchanges systemic knowledge to facilitate the development of a comprehensive human brain profile.In this review,we first summarize data mining studies utilizing datasets from the individual type of omics analysis,including epigenetics/epigenomics,transcriptomics,proteomics,metabolomics,lipidomics,and spatial omics,pertaining to Alzheimer's disease,Parkinson's disease,and multiple sclerosis.We then discuss multi-omics integration approaches,including independent biological integration and unsupervised integration methods,for more intuitive and informative interpretation of the biological data obtained across different omics layers.We further assess studies that integrate multi-omics in data mining which provide convoluted biological insights and offer proof-of-concept proposition towards systems bioinformatics in the reconstruction of brain networks.Finally,we recommend a combination of high dimensional bioinformatics analysis with experimental validation to achieve translational neuroscience applications including biomarker discovery,therapeutic development,and elucidation of disease mechanisms.We conclude by providing future perspectives and opportunities in applying integrative multi-omics and systems bioinformatics to achieve precision phenotyping of neurodegenerative diseases and towards personalized medicine.展开更多
Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice o...Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs.展开更多
[Objectives]To explore the trend of brands towards the design of waist protection products through data mining,and to provide reference for the design concept of the contour of waist protection pillow.[Methods]The str...[Objectives]To explore the trend of brands towards the design of waist protection products through data mining,and to provide reference for the design concept of the contour of waist protection pillow.[Methods]The structural design information of all waist protection equipment was collected from the national Internet platform,and the data were classified and a database was established.IBM SPSS 26.0 and MATLAB 2018a were used to analyze the data and tabulate them in Tableau 2022.4.After the association rules were clarified,the data were imported into Cinema 4D R21 to create the concept contour of waist protection pillow.[Results]The average and standard deviation of the single airbag design were the highest in all groups,with an average of 0.511 and a standard deviation of 0.502.The average and standard deviation of the upper and lower dual airbags were the lowest in all groups,with an average of 0.015 and a standard deviation of 0.120;the correlation coefficient between single airbag and 120°arc stretching was 0.325,which was positively correlated with each other(P<0.01);the correlation coefficient between multiple airbags and 360°encircling fitting was 0.501,which was positively correlated with each other and had the highest correlation degree(P<0.01).[Conclusions]The single airbag design is well recognized by companies,and has received the highest attention among all brand products.While focusing on single airbag design,most brands will consider the need to add 120°arc stretching elements in product design.At the time of focusing on multiple airbag design,some brands believe that 360°encircling fitting elements need to be added to the product,and the correlation between the two is the highest among all groups.展开更多
The study aims to recognize how efficiently Educational DataMining(EDM)integrates into Artificial Intelligence(AI)to develop skills for predicting students’performance.The study used a survey questionnaire and collec...The study aims to recognize how efficiently Educational DataMining(EDM)integrates into Artificial Intelligence(AI)to develop skills for predicting students’performance.The study used a survey questionnaire and collected data from 300 undergraduate students of Al Neelain University.The first step’s initial population placements were created using Particle Swarm Optimization(PSO).Then,using adaptive feature space search,Educational Grey Wolf Optimization(EGWO)was employed to choose the optimal attribute combination.The second stage uses the SVMclassifier to forecast classification accuracy.Different classifiers were utilized to evaluate the performance of students.According to the results,it was revealed that AI could forecast the final grades of students with an accuracy rate of 97%on the test dataset.Furthermore,the present study showed that successful students could be selected by the Decision Tree model with an efficiency rate of 87.50%and could be categorized as having equal information ratio gain after the semester.While the random forest provided an accuracy of 28%.These findings indicate the higher accuracy rate in the results when these models were implemented on the data set which provides significantly accurate results as compared to a linear regression model with accuracy(12%).The study concluded that the methodology used in this study can prove to be helpful for students and teachers in upgrading academic performance,reducing chances of failure,and taking appropriate steps at the right time to raise the standards of education.The study also motivates academics to assess and discover EDM at several other universities.展开更多
Background:Diabetic retinopathy(DR)is currently the leading cause of blindness in elderly individuals with diabetes.Traditional Chinese medicine(TCM)prescriptions have shown remarkable effectiveness for treating DR.Th...Background:Diabetic retinopathy(DR)is currently the leading cause of blindness in elderly individuals with diabetes.Traditional Chinese medicine(TCM)prescriptions have shown remarkable effectiveness for treating DR.This study aimed to screen a novel TCM prescription against DR from patents and elucidate its medication rule and molecular mechanism using data mining,network pharmacology,molecular docking and molecular dynamics(MD)simulation.Method:TCM prescriptions for treating DR was collected from patents and a novel TCM prescription was identified using data mining.Subsequently,the mechanism of the novel TCM prescription against DR was explored by constructing a network of core TCMs-core active ingredients-core targets-core pathways.Finally,molecular docking and MD simulation were employed to validate the findings from network pharmacology.Result:The TCMs of the collected prescriptions primarily possessed bitter and cold properties with heat-clearing and supplementing effects,attributed to the liver,lung and kidney channels.Notably,a novel TCM prescription for treating DR was identified,composed of Lycii Fructus,Chrysanthemi Flos,Astragali Radix and Angelicae Sinensis Radix.Twenty core active ingredients and ten core targets of the novel TCM prescription for treating DR were screened.Moreover,the novel TCM prescription played a crucial role for treating DR by inhibiting inflammatory response,oxidative stress,retinal pigment epithelium cell apoptosis and retinal neovascularization through various pathways,such as the AGE-RAGE signaling pathway in diabetic complications and the MAPK signaling pathway.Finally,molecular docking and MD simulation demonstrated that almost all core active ingredients exhibited satisfactory binding energies to core targets.Conclusions:This study identified a novel TCM prescription and unveiled its multi-component,multi-target and multi-pathway characteristics for treating DR.These findings provide a scientific basis and novel insights into the development of drugs for DR prevention and treatment.展开更多
In light of the rapid growth and development of social media, it has become the focus of interest in many different scientific fields. They seek to extract useful information from it, and this is called (knowledge), s...In light of the rapid growth and development of social media, it has become the focus of interest in many different scientific fields. They seek to extract useful information from it, and this is called (knowledge), such as extracting information related to people’s behaviors and interactions to analyze feelings or understand the behavior of users or groups, and many others. This extracted knowledge has a very important role in decision-making, creating and improving marketing objectives and competitive advantage, monitoring events, whether political or economic, and development in all fields. Therefore, to extract this knowledge, we need to analyze the vast amount of data found within social media using the most popular data mining techniques and applications related to social media sites.展开更多
The aviation industry is a sector that is developing, changing and growing every day in terms of technological and legal framework. There are generally three factors that enable airlines to hold on to the market. Thes...The aviation industry is a sector that is developing, changing and growing every day in terms of technological and legal framework. There are generally three factors that enable airlines to hold on to the market. These factors are safety, service quality and price. Airline companies can analyze the customers in the market with a focus on price and quality and develop a business model according to their expectations. For example, business class and economy class passenger expectations are different from each other, so the service and price to be offered to them will be different. However, all customers have one common expectation and that is safety. No matter how high quality the service is or how cheap the price is, no one wants to fly with an airline or plane that is not safe. From an airline company’s point of view, an accident or breakdown of one of the company’s aircraft can cause irreparable image loss and financial damage. If we look at past examples, we see that there are many airline companies or maintenance organizations that could not recover after an accident and went bankrupt. Safety is an indispensable factor. Therefore, there is a unit in the sector called the safety management system (SMS), which collects data by taking a proactive and reactive approach. The way and purpose of the safety management system is to take a proactive approach to recognize and prevent unsafe situations before they cause accidents or breakdowns, or to take a reactive approach to find the causes of accidents and breakdowns that have occurred as a result of certain factors and to take the necessary measures to prevent the same situations from happening again in the sector. The field of data mining, which is necessary to predict the future behavior of customers in the field of marketing, is an area that marketing also values. In this study, data mining studies to ensure safety in the aviation industry and the security of customer information in marketing will be emphasized, firstly, the concept and importance of data mining will be mentioned.展开更多
With the rapid development of modern science and technology, traditional randomized controlled trials have become insufficient to meet current scientific research needs, particularly in the field of clinical research....With the rapid development of modern science and technology, traditional randomized controlled trials have become insufficient to meet current scientific research needs, particularly in the field of clinical research. The emergence of real-world data studies, which align more closely with actual clinical evidence, has garnered significant attention in recent years. The following is a brief overview of the specific utilization of real-world data in drug development, which often involves large sample sizes and analyses covering a relatively diverse population without strict inclusion and exclusion criteria. Real-world data often reflects real clinical practice: treatment options are chosen according to the actual conditions and willingness of patients rather than through random assignment. Analysis based on real-world data also focuses on endpoints highly relevant to clinical benefits and the quality of life of patients. The booming big data technology supports the utilization of real-world data to accelerate new drug development, serving as an important supplement to traditional clinical trials.展开更多
The teaching quality evaluation system based on data mining technology can accurately and fairly identify the core driving factors to improve teaching quality.This method adopts the analysis of big data correlation ru...The teaching quality evaluation system based on data mining technology can accurately and fairly identify the core driving factors to improve teaching quality.This method adopts the analysis of big data correlation rules,including data collection and processing preparation steps,builds the data warehouse of association rules,and then generates an educational quality evaluation framework using the principle of data mining.Based on this,this paper analyzes the construction design and method of the teaching evaluation system under data mining,hoping to provide help for the improvement of the teaching evaluation system and the improvement of teaching quality.展开更多
Background:Using network pharmacology to explore the potential molecular mechanism of traditional Chinese medicine in treating polycystic ovary syndrome(PCOS)with kidney deficiency and blood stasis syndrome.Method:Col...Background:Using network pharmacology to explore the potential molecular mechanism of traditional Chinese medicine in treating polycystic ovary syndrome(PCOS)with kidney deficiency and blood stasis syndrome.Method:Collect the related literature materials of PCOS with kidney deficiency and blood stasis syndrome treated by traditional Chinese medicine in four databases in recent ten years,extract the information of prescriptions and complete the frequency analysis.Traditional Chinese Medicine Systems Pharmacology Database was used to screen out the effective components.Use Online Mendelian Inheritance in Man and other databases to screen PCOS disease targets.The intersection targets obtained by clustering prescription and PCOS disease targets were submitted to STRING database for protein-protein interaction network analysis,and Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes pathways were analysed by Metascape.Result:There are 155 kinds of traditional Chinese medicines used in the literature.The most commonly utilized ones are Cuscutae Semen,Angelicae Sinensis Radix,and Rehmanniae Radix Praeparata.The results of the cluster analysis indicated that the plants most commonly found throughout the prescription were Leonuri Herba,Lycopi Herba,Dipsaci Radix,etc.GO results show that biological processes include cell reaction to organic nitrogen compounds and cell reaction to nitrogen compounds.The functional display of GO molecule includes cytokine receptor binding,signal receptor regulator activity and so on.Kyoto Encyclopedia of Genes and Genomes results show that the possible mechanisms of action are cancer pathway,an endocrine resistance signal pathway.Conclusion:Through data mining,the cluster prescription for PCOS with kidney deficiency and blood stasis syndrome is Leonuri Herba,Lycopi Herba,Dipsaci Radix,etc.The network pharmacology research of cluster prescription shows that the main drug components for treating PCOS with kidney deficiency and blood stasis syndrome are quercetin,kaempferol,luteolin,tanshinone IIA,etc.,which act on PTGS2,NCOA2,and other targets,and treat PCOS with kidney deficiency and blood stasis syndrome through cancer and endocrine resistance.展开更多
One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques t...One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques that have been employed for cancer diagnosis.Exposure to air pollution has been related to various adverse health effects.This work is subject to analysis of various air pollutants and associated health hazards and intends to evaluate the impact of air pollution caused by lung cancer.We have introduced data mining in lung cancer to air pollution,and our approach includes preprocessing,data mining,testing and evaluation,and knowledge discovery.Initially,we will eradicate the noise and irrelevant data,and following that,we will join the multiple informed sources into a common source.From that source,we will designate the information relevant to our investigation to be regained from that assortment.Following that,we will convert the designated data into a suitable mining process.The patterns are abstracted by utilizing a relational suggestion rule mining process.These patterns have revealed information,and this information is categorized with the help of an Auto Associative Neural Network classification method(AANN).The proposed method is compared with the existing method in various factors.In conclusion,the projected Auto associative neural network and relational suggestion rule mining methods accomplish a high accuracy status.展开更多
Background:As of 2023,coronavirus disease 2019(COVID-19)is still spreading globally.Therefore,we aim to integrate non-critical COVID-19 high-frequency and high-targeting Chinese medicines to provide a reference for cl...Background:As of 2023,coronavirus disease 2019(COVID-19)is still spreading globally.Therefore,we aim to integrate non-critical COVID-19 high-frequency and high-targeting Chinese medicines to provide a reference for clinical prescriptions to improve COVID-19-related symptoms.Materials and methods:The information on non-critical COVID-19 high-frequency Chinese medicines in the diagnosis and treatment of COVID-19 was obtained by the TCM inheritance support platform.Using network pharmacology and molecular docking technology,high-targeting Chinese medicines with good docking activity with COVID-19 receptors angiotensin-converting enzyme-II(ACE2),3CLpro and tyrosine-protein kinase receptor UFO(AXL)were obtained.A new prescription for non-critical COVID-19 was established by integrating high-frequency and high-targeting Chinese medicines.Rats with acute lung injury induced by lipopolysaccharide were used as the experimental model.The histopathological changes in the lungs of rats in each group were observed by hematoxylin-eosin staining.The lung coefficient of rats was measured.The levels of IL-6,TNF-α,and IL-1βin serum were detected by enzyme-linked immunosorbent assay.The mRNA and protein levels of ACE2 and AXL in lung tissue were detected by real-time quantitative polymerase chain reaction and western blot.Results:Through data mining,it was found that there were 39 high-frequency traditional Chinese medicines for non-critical COVID-19 in the diagnosis and treatment guidelines.According to network pharmacology and molecular docking,30 highly targeted traditional Chinese drugs for COVID-19 were found.The new prescriptions for non-critical COVID-19 were comprehensively obtained,including Glycyrrhizae Radix,Ephedra Herba,Amygdalus Communis Vas,Gypsum Fibrosum,Descurainiae Semen,Atractylodes Lancea,Scutellariae Radix,Amomum Tsao-Ko Crevostet,Forsythiae Fructus,Pogostemon cablin,Magnolia Officinalis.Compared with the LPS-induced lung injury model group,the medium dose of the new prescription group had significantly alleviated pathological changes in lung tissue,decreased lung coefficient,decreased contents of IL-6,TNF-αand IL-1β,and increased mRNA and protein expression of ACE2 and AXL(P<0.05).Conclusion:Based on data mining,network pharmacology and molecular docking technology,the new prescription for non-critical COVID-19 established by this method has an anti-inflammatory effect on rats with acute lung injury induced by lipopolysaccharide and can provide a reference for clinicians to alleviate the symptoms related to non-critical COVID-19.展开更多
Background:Professor Yan-Xin Wang has been committed to the use of traditional Chinese medicine formulas to treat insomnia from the liver for many years,and has achieved excellent clinical results.In order to better i...Background:Professor Yan-Xin Wang has been committed to the use of traditional Chinese medicine formulas to treat insomnia from the liver for many years,and has achieved excellent clinical results.In order to better inherit Yan-Xin Wang’s academic thoughts.The purpose of this study is to use clinical data to explore the clinical experience of Prof.Yan-Xin Wang in the application of Chinese medicine to treat insomnia patients from the liver,explore the compatibility and medication rules of traditional Chinese medicine,and give more clinical treatment ideas for insomnia.Methods:The general data and prescription information of insomnia patients treated with Chinese herbal medicine by Prof.Yan-Xin Wang from January 1,2021,to December 31,2021,were summarized according to the inclusion and exclusion criteria,and the data were subjected to frequency statistics and drug association rules,complex network diagram analysis and cluster analysis.Results:A total of 159 patients and prescriptions were included in the study,of which 81.1%were women and 18.9%were men,containing 128 herbs;the highest frequency of use was 91.8%for Bupleuri Radix.Six Chinese herbs were used more than 70%of the time,namely Bupleuri Radix,Scutellariae Radix,oyster shell,Glycyrrhizae Radix,Os Draconis,and Ziziphi Spinosae Semen.The top 20 herbs in terms of frequency of use were analyzed in terms of the four Qi,five flavours,and their attributions.The four Qi were mainly calm and warm,the five flavours were mainly bitter and acrid,followed by sweet,and the attributions were mainly to the liver,spleen,and heart meridians.The Chinese medicine association rules set the confidence level>80%and the support level>10%,resulting in 10 two-herb and three-herb associations with the highest confidence level,such as Os Draconis is associated with oyster shell,Platycodonis Radix is associated with Achyranthis Bidentatae Radix,Scutellariae Radix is associated with Bupleuri Radix,Os Draconis,Bupleuri Radix is associated with oyster shell,Os Draconis,Scutellariae Radix is associated with oyster shell,etc.Cluster analysis yielded 3 classes of drug formulas.The complex network diagram shows that the core prescription drugs are composed of Bupleuri Radix,Chuanxiong Rhizoma,Pseudostellariae Radix,Jujubae Fructus,Os Draconis,Coptidis Rhizoma,Scutellariae Radix,Ziziphi Spinosae Semen,Smilacis Glabrae Rhizoma,Cinnamomi Cortex,White Moutan Cortex,Atractylodis Rhizoma,Glycyrrhizae Radix,oyster shell,Rehmanniae Radix Praeparata,Tritici Levis Fructus,Pinelliae Rhizoma Praeparatum,and Cinnamomi Ramulus.Conclusion:Prof.Yan-Xin Wang believes that the main treatment for patients with insomnia is based on the liver,by tonifying the deficiency and supporting the righteousness,mutually regulating the liver and spleen,and calming the mind and nourishing the heart,while adding and subtracting appropriate herbs according to the patient’s co-morbidities,which can significantly improve the patient’s insomnia symptoms.展开更多
Background:To investigate the clinical medication approach of Professor Guiqi Xuan(Prof.Xuan)in treating pediatric patients with attention-deficit hyperactivity disorder(ADHD)and the potential mechanism of the core he...Background:To investigate the clinical medication approach of Professor Guiqi Xuan(Prof.Xuan)in treating pediatric patients with attention-deficit hyperactivity disorder(ADHD)and the potential mechanism of the core herbal prescription.Methods:Following medical record information pretreatment,the Traditional Chinese Medicine(TCM)inheritance computing platform system V3.0 was utilized to analyze the standardized data.The associate rules were summarized to identify the core prescription for treating ADHD.The extracted core herbal prescription’s active compounds and potential targets were used to establish a protein-protein interaction network of active ingredient-disease targets.Cytoscape 3.9.1 software was used to analyze the network’s topological parameters to obtain the key active ingredients and their targets.The Bioconductor data package of R4.0.2 was used to analyze the gene ontology biological functions and Kyoto Encyclopedia of Genes and Genomes pathways of key targets.Results:Two hundred and twenty-seven entries derived from TCM record information were selected.Through data mining,it was found that 62.5%of pediatric patients had short-tempered behavior,nearly half had sleep problems,and 30%-40%had picky eating and polyphagia issues.The highest-frequency syndrome type was kidney deficiency and liver hyperactivity.Deficiency,fire,phlegm,and dyspeptic food were the main pathological factors for ADHD.Prof.Xuan’s treatment of ADHD mainly focused on replenishing kidney essence and subduing Yang(active,external,ascending,warm,bright,functional and excited pertain to Yang).The core herbal prescription for ADHD included Yuan-zhi,Yi-zhi,Gui-jia,Bai-shao,Long-chi,Ci-shi,Shi-chang-pu,Yu-jin,Fu-shen,and Huang-jing.The protein-protein interaction network showed that MAOA,ADRB2,FOS,MAOB,and SLC6A3 were the five key targets essential in treating ADHD with core herbal prescriptions.The gene ontology biological function of crucial targets mainly involved G protein-coupled amine receptor activity,catecholamine binding,and neurotransmitter transmembrane transporter activity.Analysis of Kyoto Encyclopedia of Genes and Genomes pathways showed that the dopaminergic synapse signaling and neuroactive ligand-receptor interaction pathways were significantly enriched and may be the primary routes for the main treatment of ADHD.Conclusion:Prof.Xuan’s treatment of ADHD has achieved satisfactory clinical effects by supplementing the kidney,replenishing the essence,opening the orifices,nourishing the Yin(static,internal,descending,cold,dim,organic,depressed and pertain to Yin),and subduing the Yang.The major prescription predominantly affects catecholamine binding,neuroactive ligand-receptor interaction,G protein-coupled amine receptor function,and signaling pathways for dopaminergic synapses.Our findings showed that the methodology and software used in this research could explore and analyze the mechanism behind Prof.Xuan’s clinical medication rule for treating ADHD in children.展开更多
Background:The purpose of this study was to identify the characteristics and principles of acupoints applied for treating chronic hepatitis B infection.Methods:The published clinical studies on acupuncture for the tre...Background:The purpose of this study was to identify the characteristics and principles of acupoints applied for treating chronic hepatitis B infection.Methods:The published clinical studies on acupuncture for the treatment of chronic hepatitis B infection were gathered from various databases,including SinoMed,Chongqing Vip,China National Knowledge Infrastructure,Wanfang,the Cochrane Library,PubMed,Web of Science and Embase.Excel 2019 was utilized to establish a database of acupuncture prescriptions and conduct statistics on the frequency,meridian application,distribution and specific points,as well as SPSS Modeler 18.0 and SPSS Statistics 26.0 to conduct association rule analysis and cluster analysis to investigate the characteristics and patterns of acupoint selection.Results:A total of 42 studies containing 47 acupoints were included,with a total frequency of 286 acupoints.The top five acupoints used were Zusanli(ST36),Ganshu(BL18),Yanglingquan(GB34),Sanyinjiao(SP6)and Taichong(LR3),and the most commonly used meridians was the Bladder Meridian of Foot-Taiyang.The majority of acupuncture points are located in the lower limbs,back,and lumbar regions,with a significant percentage of them being Five-Shu acupoints.The strongest acupoint combination identified was Zusanli(ST36)–Ganshu(BL18),in addition to which 13 association rules and 4 valid clusters were obtained.Conclusion:Zusanli(ST36)–Ganshu(BL18)could be considered a relatively reasonable prescription for treating chronic hepatitis B infection in clinical practice.However,further high-quality studies are needed.展开更多
基金supported by a grant from Hubei Key Laboratory of Diabetes and Angiopathy Program of Hubei University of Science and Technology(2020XZ10)Project of Education Commission of Hubei Province(B2022192).
文摘Background:Erzhu Erchen decoction(EZECD),which is based on Erchen decoction and enhanced with Atractylodes lancea and Atractylodes macrocephala,is widely used for the treatment of dampness and heat(The clinical manifestations of Western medicine include thirst,inability to drink more,diarrhea,yellow urine,red tongue,et al.)internalized disease.Nevertheless,the mechanism of EZECD on damp-heat internalized Type 2 diabetes(T2D)remains unknown.We employed data mining,pharmacology databases and experimental verification to study how EZECD treats damp-heat internalized T2D.Methods:The main compounds or genes of EZECD and damp-heat internalized T2D were obtained from the pharmacology databases.Succeeding,the overlapped targets of EZECD and damp-heat internalized T2D were performed by the Gene Ontology,kyoto encyclopedia of genes and genomes analysis.And the compound-disease targets-pathway network were constructed to obtain the hub compound.Moreover,the hub genes and core related pathways were mined with weighted gene co-expression network analysis based on Gene Expression Omnibus database,the capability of hub compound and genes was valid in AutoDock 1.5.7.Furthermore,and violin plot and gene set enrichment analysis were performed to explore the role of hub genes in damp-heat internalized T2D.Finally,the interactions of hub compound and genes were explored using Comparative Toxicogenomics Database and quantitative polymerase chain reaction.Results:First,herb-compounds-genes-disease network illustrated that the hub compound of EZECD for damp-heat internalized T2D could be quercetin.Consistently,the hub genes were CASP8,CCL2,and AHR according to weighted gene co-expression network analysis.Molecular docking showed that quercetin could bind with the hub genes.Further,gene set enrichment analysis and Gene Ontology represented that CASP8,or CCL2,is negatively involved in insulin secretion response to the TNF or lipopolysaccharide process,and AHR or CCL2 positively regulated lipid and atherosclerosis,and/or including NOD-like receptor signaling pathway,and TNF signaling pathway.Ultimately,the quantitative polymerase chain reaction and western blotting analysis showed that quercetin could down-regulated the mRNA and protein experssion of CASP8,CCL2,and AHR.It was consistent with the results in Comparative Toxicogenomics Database databases.Conclusion:These results demonstrated quercetin could inhibit the expression of CASP8,CCL2,AHR in damp-heat internalized T2D,which improves insulin secretion and inhibits lipid and atherosclerosis,as well as/or including NOD-like receptor signaling pathway,and TNF signaling pathway,suggesting that EZECD may be more effective to treat damp-heat internalized T2D.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021QD032)。
文摘Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.
基金support from the Cyber Technology Institute(CTI)at the School of Computer Science and Informatics,De Montfort University,United Kingdom,along with financial assistance from Universiti Tun Hussein Onn Malaysia and the UTHM Publisher’s office through publication fund E15216.
文摘Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making.However,imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics,limiting their overall effectiveness.This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers(SLCs)and evaluates their performance in data-driven decision-making.The evaluation uses various metrics,with a particular focus on the Harmonic Mean Score(F-1 score)on an imbalanced real-world bank target marketing dataset.The findings indicate that grid-search random forest and random-search random forest excel in Precision and area under the curve,while Extreme Gradient Boosting(XGBoost)outperforms other traditional classifiers in terms of F-1 score.Employing oversampling methods to address the imbalanced data shows significant performance improvement in XGBoost,delivering superior results across all metrics,particularly when using the SMOTE variant known as the BorderlineSMOTE2 technique.The study concludes several key factors for effectively addressing the challenges of supervised learning with imbalanced datasets.These factors include the importance of selecting appropriate datasets for training and testing,choosing the right classifiers,employing effective techniques for processing and handling imbalanced datasets,and identifying suitable metrics for performance evaluation.Additionally,factors also entail the utilisation of effective exploratory data analysis in conjunction with visualisation techniques to yield insights conducive to data-driven decision-making.
文摘Although big data is publicly available on water quality parameters,virtual simulation has not yet been adequately adapted in environmental chemistry research.Digital twin is different from conventional geospatial modeling approaches and is particularly useful when systematic laboratory/field experiment is not realistic(e.g.,climate impact and water-related environmental catastrophe)or difficult to design and monitor in a real time(e.g.,pollutant and nutrient cycles in estuaries,soils,and sediments).Data-driven water research could realize early warning and disaster readiness simulations for diverse environmental scenarios,including drinking water contamination.
基金partially supported by the Foundation of State Key Laboratory of Public Big Data(No.PBD2022-01).
文摘In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf availability is an essential indicator of shelf data management and closely relates to customer purchase behavior.RFM(recency,frequency,andmonetary)patternmining is a powerful tool to evaluate the value of customer behavior.However,the existing RFM patternmining algorithms do not consider the quarterly nature of goods,resulting in unreasonable shelf availability and difficulty in profit-making.To solve this problem,we propose a quarterly RFM mining algorithmfor On-shelf products named OS-RFM.Our algorithmmines the high recency,high frequency,and high monetary patterns and considers the period of the on-shelf goods in quarterly units.We conducted experiments using two real datasets for numerical and graphical analysis to prove the algorithm’s effectiveness.Compared with the state-of-the-art RFM mining algorithm,our algorithm can identify more patterns and performs well in terms of precision,recall,and F1-score,with the recall rate nearing 100%.Also,the novel algorithm operates with significantly shorter running times and more stable memory usage than existing mining algorithms.Additionally,we analyze the sales trends of products in different quarters and seasonal variations.The analysis assists businesses in maintaining reasonable on-shelf availability and achieving greater profitability.
基金supported by a Lee Kong Chian School of Medicine Dean’s Postdoctoral Fellowship(021207-00001)from Nanyang Technological University(NTU)Singapore and a Mistletoe Research Fellowship(022522-00001)from the Momental Foundation USA.Jialiu Zeng is supported by a Presidential Postdoctoral Fellowship(021229-00001)from NTU Singapore and an Open Fund Young Investigator Research Grant(OF-YIRG)(MOH-001147)from the National Medical Research Council(NMRC)SingaporeSu Bin Lim is supported by the National Research Foundation(NRF)of Korea(Grant Nos.:2020R1A6A1A03043539,2020M3A9D8037604,2022R1C1C1004756)a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(Grant No.:HR22C1734).
文摘Bioinformatic analysis of large and complex omics datasets has become increasingly useful in modern day biology by providing a great depth of information,with its application to neuroscience termed neuroinformatics.Data mining of omics datasets has enabled the generation of new hypotheses based on differentially regulated biological molecules associated with disease mechanisms,which can be tested experimentally for improved diagnostic and therapeutic targeting of neurodegenerative diseases.Importantly,integrating multi-omics data using a systems bioinformatics approach will advance the understanding of the layered and interactive network of biological regulation that exchanges systemic knowledge to facilitate the development of a comprehensive human brain profile.In this review,we first summarize data mining studies utilizing datasets from the individual type of omics analysis,including epigenetics/epigenomics,transcriptomics,proteomics,metabolomics,lipidomics,and spatial omics,pertaining to Alzheimer's disease,Parkinson's disease,and multiple sclerosis.We then discuss multi-omics integration approaches,including independent biological integration and unsupervised integration methods,for more intuitive and informative interpretation of the biological data obtained across different omics layers.We further assess studies that integrate multi-omics in data mining which provide convoluted biological insights and offer proof-of-concept proposition towards systems bioinformatics in the reconstruction of brain networks.Finally,we recommend a combination of high dimensional bioinformatics analysis with experimental validation to achieve translational neuroscience applications including biomarker discovery,therapeutic development,and elucidation of disease mechanisms.We conclude by providing future perspectives and opportunities in applying integrative multi-omics and systems bioinformatics to achieve precision phenotyping of neurodegenerative diseases and towards personalized medicine.
基金supported by the Ensemble Grant for Early Career Researchers 2022-2023 and the 2023 Ensemble Continuation Grant of Tohoku University,the Hirose Foundation,and the AIMR Fusion Research Grantsupported by JSPS KAKENHI Nos.JP23K13599,JP23K13703,JP22H01803,JP18H05513,and JP23K13542.F.Y.and Q.W.acknowledge the China Scholarship Council(CSC)to support their studies in Japan.
文摘Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs.
基金Supported by Municipal Public Welfare Science and Technology Project of Zhoushan Science and Technology Bureau,Zhejiang Province(2021C31064).
文摘[Objectives]To explore the trend of brands towards the design of waist protection products through data mining,and to provide reference for the design concept of the contour of waist protection pillow.[Methods]The structural design information of all waist protection equipment was collected from the national Internet platform,and the data were classified and a database was established.IBM SPSS 26.0 and MATLAB 2018a were used to analyze the data and tabulate them in Tableau 2022.4.After the association rules were clarified,the data were imported into Cinema 4D R21 to create the concept contour of waist protection pillow.[Results]The average and standard deviation of the single airbag design were the highest in all groups,with an average of 0.511 and a standard deviation of 0.502.The average and standard deviation of the upper and lower dual airbags were the lowest in all groups,with an average of 0.015 and a standard deviation of 0.120;the correlation coefficient between single airbag and 120°arc stretching was 0.325,which was positively correlated with each other(P<0.01);the correlation coefficient between multiple airbags and 360°encircling fitting was 0.501,which was positively correlated with each other and had the highest correlation degree(P<0.01).[Conclusions]The single airbag design is well recognized by companies,and has received the highest attention among all brand products.While focusing on single airbag design,most brands will consider the need to add 120°arc stretching elements in product design.At the time of focusing on multiple airbag design,some brands believe that 360°encircling fitting elements need to be added to the product,and the correlation between the two is the highest among all groups.
基金supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘The study aims to recognize how efficiently Educational DataMining(EDM)integrates into Artificial Intelligence(AI)to develop skills for predicting students’performance.The study used a survey questionnaire and collected data from 300 undergraduate students of Al Neelain University.The first step’s initial population placements were created using Particle Swarm Optimization(PSO).Then,using adaptive feature space search,Educational Grey Wolf Optimization(EGWO)was employed to choose the optimal attribute combination.The second stage uses the SVMclassifier to forecast classification accuracy.Different classifiers were utilized to evaluate the performance of students.According to the results,it was revealed that AI could forecast the final grades of students with an accuracy rate of 97%on the test dataset.Furthermore,the present study showed that successful students could be selected by the Decision Tree model with an efficiency rate of 87.50%and could be categorized as having equal information ratio gain after the semester.While the random forest provided an accuracy of 28%.These findings indicate the higher accuracy rate in the results when these models were implemented on the data set which provides significantly accurate results as compared to a linear regression model with accuracy(12%).The study concluded that the methodology used in this study can prove to be helpful for students and teachers in upgrading academic performance,reducing chances of failure,and taking appropriate steps at the right time to raise the standards of education.The study also motivates academics to assess and discover EDM at several other universities.
基金supported by the National Natural Science Foundation of China(Grant No.82104701)Science Fund Program for Outstanding Young Scholars in Universities of Anhui Province(Grant No.2022AH030064)+3 种基金Key Project at Central Government Level:the Ability Establishment of Sustainable Use for Valuable Chinese Medicine Resources(Grant No.2060302)Foundation of Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application(Grant No.2021KFKT10)China Agriculture Research System of MOF and MARA(Grant No.CARS-21)Talent Support Program of Anhui University of Chinese Medicine(Grant No.2020rcyb007).
文摘Background:Diabetic retinopathy(DR)is currently the leading cause of blindness in elderly individuals with diabetes.Traditional Chinese medicine(TCM)prescriptions have shown remarkable effectiveness for treating DR.This study aimed to screen a novel TCM prescription against DR from patents and elucidate its medication rule and molecular mechanism using data mining,network pharmacology,molecular docking and molecular dynamics(MD)simulation.Method:TCM prescriptions for treating DR was collected from patents and a novel TCM prescription was identified using data mining.Subsequently,the mechanism of the novel TCM prescription against DR was explored by constructing a network of core TCMs-core active ingredients-core targets-core pathways.Finally,molecular docking and MD simulation were employed to validate the findings from network pharmacology.Result:The TCMs of the collected prescriptions primarily possessed bitter and cold properties with heat-clearing and supplementing effects,attributed to the liver,lung and kidney channels.Notably,a novel TCM prescription for treating DR was identified,composed of Lycii Fructus,Chrysanthemi Flos,Astragali Radix and Angelicae Sinensis Radix.Twenty core active ingredients and ten core targets of the novel TCM prescription for treating DR were screened.Moreover,the novel TCM prescription played a crucial role for treating DR by inhibiting inflammatory response,oxidative stress,retinal pigment epithelium cell apoptosis and retinal neovascularization through various pathways,such as the AGE-RAGE signaling pathway in diabetic complications and the MAPK signaling pathway.Finally,molecular docking and MD simulation demonstrated that almost all core active ingredients exhibited satisfactory binding energies to core targets.Conclusions:This study identified a novel TCM prescription and unveiled its multi-component,multi-target and multi-pathway characteristics for treating DR.These findings provide a scientific basis and novel insights into the development of drugs for DR prevention and treatment.
文摘In light of the rapid growth and development of social media, it has become the focus of interest in many different scientific fields. They seek to extract useful information from it, and this is called (knowledge), such as extracting information related to people’s behaviors and interactions to analyze feelings or understand the behavior of users or groups, and many others. This extracted knowledge has a very important role in decision-making, creating and improving marketing objectives and competitive advantage, monitoring events, whether political or economic, and development in all fields. Therefore, to extract this knowledge, we need to analyze the vast amount of data found within social media using the most popular data mining techniques and applications related to social media sites.
文摘The aviation industry is a sector that is developing, changing and growing every day in terms of technological and legal framework. There are generally three factors that enable airlines to hold on to the market. These factors are safety, service quality and price. Airline companies can analyze the customers in the market with a focus on price and quality and develop a business model according to their expectations. For example, business class and economy class passenger expectations are different from each other, so the service and price to be offered to them will be different. However, all customers have one common expectation and that is safety. No matter how high quality the service is or how cheap the price is, no one wants to fly with an airline or plane that is not safe. From an airline company’s point of view, an accident or breakdown of one of the company’s aircraft can cause irreparable image loss and financial damage. If we look at past examples, we see that there are many airline companies or maintenance organizations that could not recover after an accident and went bankrupt. Safety is an indispensable factor. Therefore, there is a unit in the sector called the safety management system (SMS), which collects data by taking a proactive and reactive approach. The way and purpose of the safety management system is to take a proactive approach to recognize and prevent unsafe situations before they cause accidents or breakdowns, or to take a reactive approach to find the causes of accidents and breakdowns that have occurred as a result of certain factors and to take the necessary measures to prevent the same situations from happening again in the sector. The field of data mining, which is necessary to predict the future behavior of customers in the field of marketing, is an area that marketing also values. In this study, data mining studies to ensure safety in the aviation industry and the security of customer information in marketing will be emphasized, firstly, the concept and importance of data mining will be mentioned.
文摘With the rapid development of modern science and technology, traditional randomized controlled trials have become insufficient to meet current scientific research needs, particularly in the field of clinical research. The emergence of real-world data studies, which align more closely with actual clinical evidence, has garnered significant attention in recent years. The following is a brief overview of the specific utilization of real-world data in drug development, which often involves large sample sizes and analyses covering a relatively diverse population without strict inclusion and exclusion criteria. Real-world data often reflects real clinical practice: treatment options are chosen according to the actual conditions and willingness of patients rather than through random assignment. Analysis based on real-world data also focuses on endpoints highly relevant to clinical benefits and the quality of life of patients. The booming big data technology supports the utilization of real-world data to accelerate new drug development, serving as an important supplement to traditional clinical trials.
文摘The teaching quality evaluation system based on data mining technology can accurately and fairly identify the core driving factors to improve teaching quality.This method adopts the analysis of big data correlation rules,including data collection and processing preparation steps,builds the data warehouse of association rules,and then generates an educational quality evaluation framework using the principle of data mining.Based on this,this paper analyzes the construction design and method of the teaching evaluation system under data mining,hoping to provide help for the improvement of the teaching evaluation system and the improvement of teaching quality.
基金supported by Clinical observation on the treatment of diabetic peripheral neuropathy by supplementing qi,promoting blood circulation and tonifying kidney (grant mumber YJ202324).
文摘Background:Using network pharmacology to explore the potential molecular mechanism of traditional Chinese medicine in treating polycystic ovary syndrome(PCOS)with kidney deficiency and blood stasis syndrome.Method:Collect the related literature materials of PCOS with kidney deficiency and blood stasis syndrome treated by traditional Chinese medicine in four databases in recent ten years,extract the information of prescriptions and complete the frequency analysis.Traditional Chinese Medicine Systems Pharmacology Database was used to screen out the effective components.Use Online Mendelian Inheritance in Man and other databases to screen PCOS disease targets.The intersection targets obtained by clustering prescription and PCOS disease targets were submitted to STRING database for protein-protein interaction network analysis,and Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes pathways were analysed by Metascape.Result:There are 155 kinds of traditional Chinese medicines used in the literature.The most commonly utilized ones are Cuscutae Semen,Angelicae Sinensis Radix,and Rehmanniae Radix Praeparata.The results of the cluster analysis indicated that the plants most commonly found throughout the prescription were Leonuri Herba,Lycopi Herba,Dipsaci Radix,etc.GO results show that biological processes include cell reaction to organic nitrogen compounds and cell reaction to nitrogen compounds.The functional display of GO molecule includes cytokine receptor binding,signal receptor regulator activity and so on.Kyoto Encyclopedia of Genes and Genomes results show that the possible mechanisms of action are cancer pathway,an endocrine resistance signal pathway.Conclusion:Through data mining,the cluster prescription for PCOS with kidney deficiency and blood stasis syndrome is Leonuri Herba,Lycopi Herba,Dipsaci Radix,etc.The network pharmacology research of cluster prescription shows that the main drug components for treating PCOS with kidney deficiency and blood stasis syndrome are quercetin,kaempferol,luteolin,tanshinone IIA,etc.,which act on PTGS2,NCOA2,and other targets,and treat PCOS with kidney deficiency and blood stasis syndrome through cancer and endocrine resistance.
基金support from Taif University Researchers supporting Project Number(TURSP-2020/215),Taif University,Taif,Saudi Arabia.
文摘One of the leading cancers for both genders worldwide is lung cancer.The occurrence of lung cancer has fully augmented since the early 19th century.In this manuscript,we have discussed various data mining techniques that have been employed for cancer diagnosis.Exposure to air pollution has been related to various adverse health effects.This work is subject to analysis of various air pollutants and associated health hazards and intends to evaluate the impact of air pollution caused by lung cancer.We have introduced data mining in lung cancer to air pollution,and our approach includes preprocessing,data mining,testing and evaluation,and knowledge discovery.Initially,we will eradicate the noise and irrelevant data,and following that,we will join the multiple informed sources into a common source.From that source,we will designate the information relevant to our investigation to be regained from that assortment.Following that,we will convert the designated data into a suitable mining process.The patterns are abstracted by utilizing a relational suggestion rule mining process.These patterns have revealed information,and this information is categorized with the help of an Auto Associative Neural Network classification method(AANN).The proposed method is compared with the existing method in various factors.In conclusion,the projected Auto associative neural network and relational suggestion rule mining methods accomplish a high accuracy status.
基金Scientific Research Project of Hebei Provincial Administration of Traditional Chinese Medicine(No.2021175).
文摘Background:As of 2023,coronavirus disease 2019(COVID-19)is still spreading globally.Therefore,we aim to integrate non-critical COVID-19 high-frequency and high-targeting Chinese medicines to provide a reference for clinical prescriptions to improve COVID-19-related symptoms.Materials and methods:The information on non-critical COVID-19 high-frequency Chinese medicines in the diagnosis and treatment of COVID-19 was obtained by the TCM inheritance support platform.Using network pharmacology and molecular docking technology,high-targeting Chinese medicines with good docking activity with COVID-19 receptors angiotensin-converting enzyme-II(ACE2),3CLpro and tyrosine-protein kinase receptor UFO(AXL)were obtained.A new prescription for non-critical COVID-19 was established by integrating high-frequency and high-targeting Chinese medicines.Rats with acute lung injury induced by lipopolysaccharide were used as the experimental model.The histopathological changes in the lungs of rats in each group were observed by hematoxylin-eosin staining.The lung coefficient of rats was measured.The levels of IL-6,TNF-α,and IL-1βin serum were detected by enzyme-linked immunosorbent assay.The mRNA and protein levels of ACE2 and AXL in lung tissue were detected by real-time quantitative polymerase chain reaction and western blot.Results:Through data mining,it was found that there were 39 high-frequency traditional Chinese medicines for non-critical COVID-19 in the diagnosis and treatment guidelines.According to network pharmacology and molecular docking,30 highly targeted traditional Chinese drugs for COVID-19 were found.The new prescriptions for non-critical COVID-19 were comprehensively obtained,including Glycyrrhizae Radix,Ephedra Herba,Amygdalus Communis Vas,Gypsum Fibrosum,Descurainiae Semen,Atractylodes Lancea,Scutellariae Radix,Amomum Tsao-Ko Crevostet,Forsythiae Fructus,Pogostemon cablin,Magnolia Officinalis.Compared with the LPS-induced lung injury model group,the medium dose of the new prescription group had significantly alleviated pathological changes in lung tissue,decreased lung coefficient,decreased contents of IL-6,TNF-αand IL-1β,and increased mRNA and protein expression of ACE2 and AXL(P<0.05).Conclusion:Based on data mining,network pharmacology and molecular docking technology,the new prescription for non-critical COVID-19 established by this method has an anti-inflammatory effect on rats with acute lung injury induced by lipopolysaccharide and can provide a reference for clinicians to alleviate the symptoms related to non-critical COVID-19.
基金The Fourth National Training Program for Excellent Talents in Chinese Medicine(Clinical and Basic)(2017-24)Natural Science Research Project of Anhui University(KJ2020A0438)。
文摘Background:Professor Yan-Xin Wang has been committed to the use of traditional Chinese medicine formulas to treat insomnia from the liver for many years,and has achieved excellent clinical results.In order to better inherit Yan-Xin Wang’s academic thoughts.The purpose of this study is to use clinical data to explore the clinical experience of Prof.Yan-Xin Wang in the application of Chinese medicine to treat insomnia patients from the liver,explore the compatibility and medication rules of traditional Chinese medicine,and give more clinical treatment ideas for insomnia.Methods:The general data and prescription information of insomnia patients treated with Chinese herbal medicine by Prof.Yan-Xin Wang from January 1,2021,to December 31,2021,were summarized according to the inclusion and exclusion criteria,and the data were subjected to frequency statistics and drug association rules,complex network diagram analysis and cluster analysis.Results:A total of 159 patients and prescriptions were included in the study,of which 81.1%were women and 18.9%were men,containing 128 herbs;the highest frequency of use was 91.8%for Bupleuri Radix.Six Chinese herbs were used more than 70%of the time,namely Bupleuri Radix,Scutellariae Radix,oyster shell,Glycyrrhizae Radix,Os Draconis,and Ziziphi Spinosae Semen.The top 20 herbs in terms of frequency of use were analyzed in terms of the four Qi,five flavours,and their attributions.The four Qi were mainly calm and warm,the five flavours were mainly bitter and acrid,followed by sweet,and the attributions were mainly to the liver,spleen,and heart meridians.The Chinese medicine association rules set the confidence level>80%and the support level>10%,resulting in 10 two-herb and three-herb associations with the highest confidence level,such as Os Draconis is associated with oyster shell,Platycodonis Radix is associated with Achyranthis Bidentatae Radix,Scutellariae Radix is associated with Bupleuri Radix,Os Draconis,Bupleuri Radix is associated with oyster shell,Os Draconis,Scutellariae Radix is associated with oyster shell,etc.Cluster analysis yielded 3 classes of drug formulas.The complex network diagram shows that the core prescription drugs are composed of Bupleuri Radix,Chuanxiong Rhizoma,Pseudostellariae Radix,Jujubae Fructus,Os Draconis,Coptidis Rhizoma,Scutellariae Radix,Ziziphi Spinosae Semen,Smilacis Glabrae Rhizoma,Cinnamomi Cortex,White Moutan Cortex,Atractylodis Rhizoma,Glycyrrhizae Radix,oyster shell,Rehmanniae Radix Praeparata,Tritici Levis Fructus,Pinelliae Rhizoma Praeparatum,and Cinnamomi Ramulus.Conclusion:Prof.Yan-Xin Wang believes that the main treatment for patients with insomnia is based on the liver,by tonifying the deficiency and supporting the righteousness,mutually regulating the liver and spleen,and calming the mind and nourishing the heart,while adding and subtracting appropriate herbs according to the patient’s co-morbidities,which can significantly improve the patient’s insomnia symptoms.
基金This work was supported by the Hangzhou XUANs’Pediatric School Inheritance Studio Construction Project(No.[2012]228).
文摘Background:To investigate the clinical medication approach of Professor Guiqi Xuan(Prof.Xuan)in treating pediatric patients with attention-deficit hyperactivity disorder(ADHD)and the potential mechanism of the core herbal prescription.Methods:Following medical record information pretreatment,the Traditional Chinese Medicine(TCM)inheritance computing platform system V3.0 was utilized to analyze the standardized data.The associate rules were summarized to identify the core prescription for treating ADHD.The extracted core herbal prescription’s active compounds and potential targets were used to establish a protein-protein interaction network of active ingredient-disease targets.Cytoscape 3.9.1 software was used to analyze the network’s topological parameters to obtain the key active ingredients and their targets.The Bioconductor data package of R4.0.2 was used to analyze the gene ontology biological functions and Kyoto Encyclopedia of Genes and Genomes pathways of key targets.Results:Two hundred and twenty-seven entries derived from TCM record information were selected.Through data mining,it was found that 62.5%of pediatric patients had short-tempered behavior,nearly half had sleep problems,and 30%-40%had picky eating and polyphagia issues.The highest-frequency syndrome type was kidney deficiency and liver hyperactivity.Deficiency,fire,phlegm,and dyspeptic food were the main pathological factors for ADHD.Prof.Xuan’s treatment of ADHD mainly focused on replenishing kidney essence and subduing Yang(active,external,ascending,warm,bright,functional and excited pertain to Yang).The core herbal prescription for ADHD included Yuan-zhi,Yi-zhi,Gui-jia,Bai-shao,Long-chi,Ci-shi,Shi-chang-pu,Yu-jin,Fu-shen,and Huang-jing.The protein-protein interaction network showed that MAOA,ADRB2,FOS,MAOB,and SLC6A3 were the five key targets essential in treating ADHD with core herbal prescriptions.The gene ontology biological function of crucial targets mainly involved G protein-coupled amine receptor activity,catecholamine binding,and neurotransmitter transmembrane transporter activity.Analysis of Kyoto Encyclopedia of Genes and Genomes pathways showed that the dopaminergic synapse signaling and neuroactive ligand-receptor interaction pathways were significantly enriched and may be the primary routes for the main treatment of ADHD.Conclusion:Prof.Xuan’s treatment of ADHD has achieved satisfactory clinical effects by supplementing the kidney,replenishing the essence,opening the orifices,nourishing the Yin(static,internal,descending,cold,dim,organic,depressed and pertain to Yin),and subduing the Yang.The major prescription predominantly affects catecholamine binding,neuroactive ligand-receptor interaction,G protein-coupled amine receptor function,and signaling pathways for dopaminergic synapses.Our findings showed that the methodology and software used in this research could explore and analyze the mechanism behind Prof.Xuan’s clinical medication rule for treating ADHD in children.
基金supported by Chongqing Municipal Health and Family Planning Commission and Chongqing Municipal Science and Technology Commission Jointly Funded Key Research Projects in Traditional Chinese Medicine(ZY201801007).
文摘Background:The purpose of this study was to identify the characteristics and principles of acupoints applied for treating chronic hepatitis B infection.Methods:The published clinical studies on acupuncture for the treatment of chronic hepatitis B infection were gathered from various databases,including SinoMed,Chongqing Vip,China National Knowledge Infrastructure,Wanfang,the Cochrane Library,PubMed,Web of Science and Embase.Excel 2019 was utilized to establish a database of acupuncture prescriptions and conduct statistics on the frequency,meridian application,distribution and specific points,as well as SPSS Modeler 18.0 and SPSS Statistics 26.0 to conduct association rule analysis and cluster analysis to investigate the characteristics and patterns of acupoint selection.Results:A total of 42 studies containing 47 acupoints were included,with a total frequency of 286 acupoints.The top five acupoints used were Zusanli(ST36),Ganshu(BL18),Yanglingquan(GB34),Sanyinjiao(SP6)and Taichong(LR3),and the most commonly used meridians was the Bladder Meridian of Foot-Taiyang.The majority of acupuncture points are located in the lower limbs,back,and lumbar regions,with a significant percentage of them being Five-Shu acupoints.The strongest acupoint combination identified was Zusanli(ST36)–Ganshu(BL18),in addition to which 13 association rules and 4 valid clusters were obtained.Conclusion:Zusanli(ST36)–Ganshu(BL18)could be considered a relatively reasonable prescription for treating chronic hepatitis B infection in clinical practice.However,further high-quality studies are needed.