期刊文献+
共找到1,289,944篇文章
< 1 2 250 >
每页显示 20 50 100
Topology Data Analysis-Based Error Detection for Semantic Image Transmission with Incremental Knowledge-Based HARQ
1
作者 Ni Fei Li Rongpeng +1 位作者 Zhao Zhifeng Zhang Honggang 《China Communications》 2025年第1期235-255,共21页
Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpe... Semantic communication(SemCom)aims to achieve high-fidelity information delivery under low communication consumption by only guaranteeing semantic accuracy.Nevertheless,semantic communication still suffers from unexpected channel volatility and thus developing a re-transmission mechanism(e.g.,hybrid automatic repeat request[HARQ])becomes indispensable.In that regard,instead of discarding previously transmitted information,the incremental knowledge-based HARQ(IK-HARQ)is deemed as a more effective mechanism that could sufficiently utilize the information semantics.However,considering the possible existence of semantic ambiguity in image transmission,a simple bit-level cyclic redundancy check(CRC)might compromise the performance of IK-HARQ.Therefore,there emerges a strong incentive to revolutionize the CRC mechanism,thus more effectively reaping the benefits of both SemCom and HARQ.In this paper,built on top of swin transformer-based joint source-channel coding(JSCC)and IK-HARQ,we propose a semantic image transmission framework SC-TDA-HARQ.In particular,different from the conventional CRC,we introduce a topological data analysis(TDA)-based error detection method,which capably digs out the inner topological and geometric information of images,to capture semantic information and determine the necessity for re-transmission.Extensive numerical results validate the effectiveness and efficiency of the proposed SC-TDA-HARQ framework,especially under the limited bandwidth condition,and manifest the superiority of TDA-based error detection method in image transmission. 展开更多
关键词 error detection incremental knowledgebased HARQ joint source-channel coding semantic communication swin transformer topological data analysis
下载PDF
Failure rate analysis and maintenance plan optimization method for civil aircraft parts based on data fusion
2
作者 Kang CAO Yongjie ZHANG Jianfei FENG 《Chinese Journal of Aeronautics》 2025年第1期306-324,共19页
In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design.... In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design.This study addresses this issue by presenting a novel combined data fusion algorithm,which serves to enhance the accuracy and reliability of failure rate analysis for a specific aircraft model by integrating historical failure data from similar models as supplementary information.Through a comprehensive analysis of two different maintenance projects,this study illustrates the application process of the algorithm.Building upon the analysis results,this paper introduces the innovative equal integral value method as a replacement for the conventional equal interval method in the context of maintenance schedule optimization.The Monte Carlo simulation example validates that the equivalent essential value method surpasses the traditional method by over 20%in terms of inspection efficiency ratio.This discovery indicates that the equal critical value method not only upholds maintenance efficiency but also substantially decreases workload and maintenance costs.The findings of this study open up novel perspectives for airlines grappling with data scarcity,offer fresh strategies for the optimization of aviation maintenance practices,and chart a new course toward achieving more efficient and cost-effective maintenance schedule optimization through refined data analysis. 展开更多
关键词 Small sample data data fusion Failure rate Maintenance planning Aircraft parts
原文传递
Evaluation of ERA5 reanalysis temperature data over the Qilian Mountains of China
3
作者 ZHAO Peng HE Zhibin 《Journal of Mountain Science》 2025年第1期198-209,共12页
Air temperature is an important indicator to analyze climate change in mountainous areas.ERA5 reanalysis air temperature data are important products that were widely used to analyze temperature change in mountainous a... Air temperature is an important indicator to analyze climate change in mountainous areas.ERA5 reanalysis air temperature data are important products that were widely used to analyze temperature change in mountainous areas.However,the reliability of ERA5 reanalysis air temperature over the Qilian Mountains(QLM)is unclear.In this study,we evaluated the reliability of ERA5 monthly averaged reanalysis 2 m air temperature data using the observations at 17 meteorological stations in the QLM from 1979 to 2017.The results showed that:ERA5 reanalysis monthly averaged air temperature data have a good applicability in the QLM in general(R2=0.99).ERA5 reanalysis temperature data overestimated the observed temperature in the QLM in general.Root mean square error(RMSE)increases with the increasing of elevation range,showing that the reliability of ERA5 reanalysis temperature data is worse in higher elevation than that in lower altitude.ERA5 reanalysis temperature can capture observational warming rates well.All the smallest warming rates of observational temperature and ERA5 reanalysis temperature are found in winter,with the warming rates of 0.393°C/10a and 0.360°C/10a,respectively.This study will provide a reference for the application of ERA5 reanalysis monthly averaged air temperature data at different elevation ranges in the Qilian Mountains. 展开更多
关键词 ERA5 Reanalysis data Air temperature Qilian Mountains Climate change
下载PDF
Study of inter-well interference in shale gas reservoirs by a robust production data analysis method based on deconvolution
4
作者 Wen-Chao Liu Cheng-Cheng Qiao +5 位作者 Ping Wang Wen-Song Huang Xiang-Wen Kong Yu-Ping Sun He-Dong Sun Yue-Peng Jia 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2502-2519,共18页
In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolut... In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells. 展开更多
关键词 Shale gas Inter-well interference DECONVOLUTION Production data analysis Typical curves Multi-stage fractured horizontal well
下载PDF
Quantitative Analysis of Seeing with Height and Time at Muztagh-Ata Site Based on ERA5 Database
5
作者 Xiao-Qi Wu Cun-Ying Xiao +3 位作者 Ali Esamdin Jing Xu Ze-Wei Wang Luo Xiao 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第1期87-95,共9页
Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanal... Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy. 展开更多
关键词 site testing atmospheric effects methods:data analysis telescopes EARTH
下载PDF
Data-driven analysis of chemicals,proteins and pathways associated with peanut allergy:from molecular networking to biological interpretation
6
作者 Emmanuel Kemmler Julian Braun +5 位作者 Florent Fauchère Sabine Dölle-Bierke Kirsten Beyer Robert Preissner Margitta Worm Priyanka Banerjee 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1322-1335,共14页
Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fis... Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fish and shellfish are responsible for more than 90%of food allergies.Here,we provide promising insights using a large-scale data-driven analysis,comparing the mechanistic feature and biological relevance of different ingredients presents in peanuts,tree nuts(walnuts,almonds,cashews,pecans and pistachios)and soybean.Additionally,we have analysed the chemical compositions of peanuts in different processed form raw,boiled and dry-roasted.Using the data-driven approach we are able to generate new hypotheses to explain why nuclear receptors like the peroxisome proliferator-activated receptors(PPARs)and its isoform and their interaction with dietary lipids may have significant effect on allergic response.The results obtained from this study will direct future experimeantal and clinical studies to understand the role of dietary lipids and PPARisoforms to exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to the cells of the adaptive immunity. 展开更多
关键词 Allergy informatics Knowledge-graph data analysis Food allergy Peroxisome proliferator-activated receptors Fatty acids
下载PDF
Assimilation of GOES-R Geostationary Lightning Mapper Flash Extent Density Data in GSI 3DVar, EnKF, and Hybrid En3DVar for the Analysis and Short-Term Forecast of a Supercell Storm Case 被引量:1
7
作者 Rong KONG Ming XUE +2 位作者 Edward R.MANSELL Chengsi LIU Alexandre O.FIERRO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期263-277,共15页
Capabilities to assimilate Geostationary Operational Environmental Satellite “R-series ”(GOES-R) Geostationary Lightning Mapper(GLM) flash extent density(FED) data within the operational Gridpoint Statistical Interp... Capabilities to assimilate Geostationary Operational Environmental Satellite “R-series ”(GOES-R) Geostationary Lightning Mapper(GLM) flash extent density(FED) data within the operational Gridpoint Statistical Interpolation ensemble Kalman filter(GSI-EnKF) framework were previously developed and tested with a mesoscale convective system(MCS) case. In this study, such capabilities are further developed to assimilate GOES GLM FED data within the GSI ensemble-variational(EnVar) hybrid data assimilation(DA) framework. The results of assimilating the GLM FED data using 3DVar, and pure En3DVar(PEn3DVar, using 100% ensemble covariance and no static covariance) are compared with those of EnKF/DfEnKF for a supercell storm case. The focus of this study is to validate the correctness and evaluate the performance of the new implementation rather than comparing the performance of FED DA among different DA schemes. Only the results of 3DVar and pEn3DVar are examined and compared with EnKF/DfEnKF. Assimilation of a single FED observation shows that the magnitude and horizontal extent of the analysis increments from PEn3DVar are generally larger than from EnKF, which is mainly caused by using different localization strategies in EnFK/DfEnKF and PEn3DVar as well as the integration limits of the graupel mass in the observation operator. Overall, the forecast performance of PEn3DVar is comparable to EnKF/DfEnKF, suggesting correct implementation. 展开更多
关键词 GOES-R LIGHTNING data assimilation ENKF EnVar
下载PDF
Detection of Turbulence Anomalies Using a Symbolic Classifier Algorithm in Airborne Quick Access Record(QAR)Data Analysis 被引量:1
8
作者 Zibo ZHUANG Kunyun LIN +1 位作者 Hongying ZHANG Pak-Wai CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1438-1449,共12页
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ... As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards. 展开更多
关键词 turbulence detection symbolic classifier quick access recorder data
下载PDF
Enhancing Data Analysis and Automation: Integrating Python with Microsoft Excel for Non-Programmers
9
作者 Osama Magdy Ali Mohamed Breik +2 位作者 Tarek Aly Atef Tayh Nour El-Din Raslan Mervat Gheith 《Journal of Software Engineering and Applications》 2024年第6期530-540,共11页
Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision... Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision-making across diverse domains. Conversely, Python is indispensable for professional programming due to its versatility, readability, extensive libraries, and robust community support. It enables efficient development, advanced data analysis, data mining, and automation, catering to diverse industries and applications. However, one primary issue when using Microsoft Excel with Python libraries is compatibility and interoperability. While Excel is a widely used tool for data storage and analysis, it may not seamlessly integrate with Python libraries, leading to challenges in reading and writing data, especially in complex or large datasets. Additionally, manipulating Excel files with Python may not always preserve formatting or formulas accurately, potentially affecting data integrity. Moreover, dependency on Excel’s graphical user interface (GUI) for automation can limit scalability and reproducibility compared to Python’s scripting capabilities. This paper covers the integration solution of empowering non-programmers to leverage Python’s capabilities within the familiar Excel environment. This enables users to perform advanced data analysis and automation tasks without requiring extensive programming knowledge. Based on Soliciting feedback from non-programmers who have tested the integration solution, the case study shows how the solution evaluates the ease of implementation, performance, and compatibility of Python with Excel versions. 展开更多
关键词 PYTHON End-User Approach Microsoft Excel data analysis Integration SPREADSHEET PROGRAMMING data Visualization
下载PDF
Accurate method based on data filtering for quantitative multi-element analysis of soils using CF-LIBS
10
作者 韩伟伟 孙对兄 +7 位作者 张国鼎 董光辉 崔小娜 申金成 王浩亮 张登红 董晨钟 苏茂根 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期149-158,共10页
To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis o... To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis of soils using calibration-free laser-induced breakdown spectroscopy(CF-LIBS) based on data filtering. In this study, we analyze a standard soil sample doped with two heavy metal elements, Cu and Cd, with a specific focus on the line of Cu I324.75 nm for filtering the experimental data of multiple sample sets. Pre-and post-data filtering,the relative standard deviation for Cu decreased from 30% to 10%, The limits of detection(LOD)values for Cu and Cd decreased by 5% and 4%, respectively. Through CF-LIBS, a quantitative analysis was conducted to determine the relative content of elements in soils. Using Cu as a reference, the concentration of Cd was accurately calculated. The results show that post-data filtering, the average relative error of the Cd decreases from 11% to 5%, indicating the effectiveness of data filtering in improving the accuracy of quantitative analysis. Moreover, the content of Si, Fe and other elements can be accurately calculated using this method. To further correct the calculation, the results for Cd was used to provide a more precise calculation. This approach is of great importance for the large-area in-situ heavy metals and trace elements detection in soil, as well as for rapid and accurate quantitative analysis. 展开更多
关键词 laser-induced breakdown spectroscopy SOIL data filtering quantitative analysis multielement
下载PDF
Statistical Analysis of Abilities to Give Consent to Health Data Processing
11
作者 Antonella Massari Biagio Solarino +5 位作者 Paola Perchinunno Angela Maria D’Uggento Marcello Benevento Viviana D’Addosio Vittoria Claudia De Nicolò Samuela L’Abbate 《Applied Mathematics》 2024年第8期508-542,共35页
The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every in... The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every individual. In this context, it is essential to find a balance between the protection of privacy and the safeguarding of public health, using tools that guarantee transparency and consent to the processing of data by the population. This work, starting from a pilot investigation conducted in the Polyclinic of Bari as part of the Horizon Europe Seeds project entitled “Multidisciplinary analysis of technological tracing models of contagion: the protection of rights in the management of health data”, has the objective of promoting greater patient awareness regarding the processing of their health data and the protection of privacy. The methodology used the PHICAT (Personal Health Information Competence Assessment Tool) as a tool and, through the administration of a questionnaire, the aim was to evaluate the patients’ ability to express their consent to the release and processing of health data. The results that emerged were analyzed in relation to the 4 domains in which the process is divided which allows evaluating the patients’ ability to express a conscious choice and, also, in relation to the socio-demographic and clinical characteristics of the patients themselves. This study can contribute to understanding patients’ ability to give their consent and improve information regarding the management of health data by increasing confidence in granting the use of their data for research and clinical management. 展开更多
关键词 PRIVACY Health data Consent Cluster analysis LOGIT
下载PDF
Block Incremental Dense Tucker Decomposition with Application to Spatial and Temporal Analysis of Air Quality Data
12
作者 SangSeok Lee HaeWon Moon Lee Sael 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期319-336,共18页
How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form... How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form of time-growing tensors.For example,air quality tensor data consists of multiple sensory values gathered from wide locations for a long time.Such data,accumulated over time,is redundant and consumes a lot ofmemory in its raw form.We need a way to efficiently store dynamically generated tensor data that increase over time and to model their behavior on demand between arbitrary time blocks.To this end,we propose a Block IncrementalDense Tucker Decomposition(BID-Tucker)method for efficient storage and on-demand modeling ofmultidimensional spatiotemporal data.Assuming that tensors come in unit blocks where only the time domain changes,our proposed BID-Tucker first slices the blocks into matrices and decomposes them via singular value decomposition(SVD).The SVDs of the time×space sliced matrices are stored instead of the raw tensor blocks to save space.When modeling from data is required at particular time blocks,the SVDs of corresponding time blocks are retrieved and incremented to be used for Tucker decomposition.The factor matrices and core tensor of the decomposed results can then be used for further data analysis.We compared our proposed BID-Tucker with D-Tucker,which our method extends,and vanilla Tucker decomposition.We show that our BID-Tucker is faster than both D-Tucker and vanilla Tucker decomposition and uses less memory for storage with a comparable reconstruction error.We applied our proposed BID-Tucker to model the spatial and temporal trends of air quality data collected in South Korea from 2018 to 2022.We were able to model the spatial and temporal air quality trends.We were also able to verify unusual events,such as chronic ozone alerts and large fire events. 展开更多
关键词 Dynamic decomposition tucker tensor tensor factorization spatiotemporal data tensor analysis air quality
下载PDF
A State-Migration Particle Swarm Optimizer for Adaptive Latent Factor Analysis of High-Dimensional and Incomplete Data
13
作者 Jiufang Chen Kechen Liu +4 位作者 Xin Luo Ye Yuan Khaled Sedraoui Yusuf Al-Turki MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第11期2220-2235,共16页
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear... High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable requirements.However, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational efficiency.Hence, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices. 展开更多
关键词 data science generalized momentum high-dimensional and incomplete(HDI)data hyper-parameter adaptation latent factor analysis(LFA) particle swarm optimization(PSO)
下载PDF
A Robust Framework for Multimodal Sentiment Analysis with Noisy Labels Generated from Distributed Data Annotation
14
作者 Kai Jiang Bin Cao Jing Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2965-2984,共20页
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha... Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines. 展开更多
关键词 Distributed data collection multimodal sentiment analysis meta learning learn with noisy labels
下载PDF
Comparison of R and Excel in the Field of Data Analysis
15
作者 Jue Wang 《Journal of Electronic Research and Application》 2024年第3期178-184,共7页
This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and i... This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and its powerful data management and analysis tools make it suitable for handling complex data analysis tasks.It is also highly customizable,allowing users to create custom functions and packages to meet their specific needs.Additionally,R language provides high reproducibility,making it easy to replicate and verify research results,and it has excellent collaboration capabilities,enabling multiple users to work on the same project simultaneously.These advantages make R language a more suitable choice for complex data analysis tasks,particularly in scientific research and business applications.The findings of this study will help people understand that R is not just a language that can handle more data than Excel and demonstrate that r is essential to the field of data analysis.At the same time,it will also help users and organizations make informed decisions regarding their data analysis needs and software preferences. 展开更多
关键词 EXCEL R language data analysis Open source COMPARE data management Advantages Disadvantages FUNCTION
下载PDF
Performance Analysis and Optimization of Energy Harvesting Modulation for Multi-User Integrated Data and Energy Transfer
16
作者 Yizhe Zhao Yanliang Wu +1 位作者 Jie Hu Kun Yang 《China Communications》 SCIE CSCD 2024年第1期148-162,共15页
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ... Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance. 展开更多
关键词 energy harvesting modulation(EHM) integrated data and energy transfer(IDET) performance analysis wireless data transfer(WDT) wireless energy transfer(WET)
下载PDF
The use of concept mapping in data analysis:a phenomenology study of family members'experiences in taking care of people with cancer
17
作者 Merry Andriani Titan Ligita 《Frontiers of Nursing》 2024年第4期365-372,共8页
Objective:To explain the use of concept mapping in a study about family members'experiences in taking care of people with cancer.Methods:This study used a phenomenological study design.In this study,we describe th... Objective:To explain the use of concept mapping in a study about family members'experiences in taking care of people with cancer.Methods:This study used a phenomenological study design.In this study,we describe the analytical process of using concept mapping in our phenomenological studies about family members'experiences in taking care of people with cancer.Results:We developed several concept maps that aided us in analyzing our collected data from the interviews.Conclusions:The use of concept mapping is suggested to researchers who intend to analyze their data in any qualitative studies,including those using a phenomenological design,because it is a time-efficient way of dealing with large amounts of qualitative data during the analytical process. 展开更多
关键词 CANCER concept mapping data analysis FAMILY PHENOMENOLOGY
下载PDF
Exploration of University English Teachers’Acceptance and Willingness to Use Learning Management System Data Analysis Tools
18
作者 Xiaochao Yao 《Journal of Contemporary Educational Research》 2024年第9期120-128,共9页
This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combin... This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combining quantitative surveys and qualitative interviews to understand teachers’perceptions and attitudes,and the factors influencing their adoption of LMS data analysis tools.The findings reveal that perceived usefulness,perceived ease of use,technical literacy,organizational support,and data privacy concerns significantly impact teachers’willingness to use these tools.Based on these insights,the study offers practical recommendations for educational institutions to enhance the effective adoption of LMS data analysis tools in English language teaching. 展开更多
关键词 Learning management system data analysis tools Technology acceptance University English teachers Educational technology data privacy concerns
下载PDF
Data Analysis Methods and Signal Processing Techniques in Gravitational Wave Detection
19
作者 Bojun Yan 《Journal of Applied Mathematics and Physics》 2024年第11期3774-3783,共10页
Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive r... Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive review of data analysis methods and signal processing techniques in gravitational wave detection. The research begins by introducing the characteristics of gravitational wave signals and the challenges faced in their detection, such as extremely low signal-to-noise ratios and complex noise backgrounds. It then systematically analyzes the application of time-frequency analysis methods in extracting transient gravitational wave signals, including wavelet transforms and Hilbert-Huang transforms. The study focuses on discussing the crucial role of matched filtering techniques in improving signal detection sensitivity and explores strategies for template bank optimization. Additionally, the research evaluates the potential of machine learning algorithms, especially deep learning networks, in rapidly identifying and classifying gravitational wave events. The study also analyzes the application of Bayesian inference methods in parameter estimation and model selection, as well as their advantages in handling uncertainties. However, the research also points out the challenges faced by current technologies, such as dealing with non-Gaussian noise and improving computational efficiency. To address these issues, the study proposes a hybrid analysis framework combining physical models and data-driven methods. Finally, the research looks ahead to the potential applications of quantum computing in future gravitational wave data analysis. This study provides a comprehensive theoretical foundation for the optimization and innovation of gravitational wave data analysis methods, contributing to the advancement of gravitational wave astronomy. 展开更多
关键词 Gravitational Wave Detection data analysis Signal Processing Matched Filtering Machine Learning
下载PDF
Data Visualization in Big Data Analysis: Applications and Future Trends
20
作者 Wenyi Ouyang 《Journal of Computer and Communications》 2024年第11期76-85,共10页
The advent of the big data era has made data visualization a crucial tool for enhancing the efficiency and insights of data analysis. This theoretical research delves into the current applications and potential future... The advent of the big data era has made data visualization a crucial tool for enhancing the efficiency and insights of data analysis. This theoretical research delves into the current applications and potential future trends of data visualization in big data analysis. The article first systematically reviews the theoretical foundations and technological evolution of data visualization, and thoroughly analyzes the challenges faced by visualization in the big data environment, such as massive data processing, real-time visualization requirements, and multi-dimensional data display. Through extensive literature research, it explores innovative application cases and theoretical models of data visualization in multiple fields including business intelligence, scientific research, and public decision-making. The study reveals that interactive visualization, real-time visualization, and immersive visualization technologies may become the main directions for future development and analyzes the potential of these technologies in enhancing user experience and data comprehension. The paper also delves into the theoretical potential of artificial intelligence technology in enhancing data visualization capabilities, such as automated chart generation, intelligent recommendation of visualization schemes, and adaptive visualization interfaces. The research also focuses on the role of data visualization in promoting interdisciplinary collaboration and data democratization. Finally, the paper proposes theoretical suggestions for promoting data visualization technology innovation and application popularization, including strengthening visualization literacy education, developing standardized visualization frameworks, and promoting open-source sharing of visualization tools. This study provides a comprehensive theoretical perspective for understanding the importance of data visualization in the big data era and its future development directions. 展开更多
关键词 data Visualization Big data analysis Artificial Intelligence Interactive Visualization data-Driven Decision Making
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部