“双碳”目标下,各类可再生能源发电技术发展迅速,综合权衡不同可再生能源发电方案的综合效益对可再生能源的优化设计具有重要意义。综合考虑经济效益、环境效益、能源效益和社会效益4个层面,提出了一种基于模糊决策试验和评价实验(deci...“双碳”目标下,各类可再生能源发电技术发展迅速,综合权衡不同可再生能源发电方案的综合效益对可再生能源的优化设计具有重要意义。综合考虑经济效益、环境效益、能源效益和社会效益4个层面,提出了一种基于模糊决策试验和评价实验(decision making trial and evaluation laboratory,DEMATEL)与超效率数据包络分析(data envelopment analysis,DEA)模型的可再生能源发电技术综合效益评估方法。该方法分为投入-产出指标体系构建和综合评估2个阶段。首先,利用三角直觉模糊数处理模糊评价信息,将其与DEMATEL相结合量化各指标之间相互影响关系,基于指标间逻辑分析结果建立投入-产出评估指标体系。然后,基于超效率DEA模型对各可再生能源发电方案进行评估排序,结合投入冗余和产出不足分析结果给出各方案的针对性改善建议,以期为进一步选择和确定可再生能源产业发展战略提供参考。最后以某省10类可再生能源发电单元为研究对象,基于所提研究方法进行综合评估和分析,并与多准则妥协解排序法和熵权法进行对比分析,验证了所提方法的有效性。展开更多
In the nonparametric data envelopment analysis literature,scale elasticity is evaluated in two alternative ways:using either the technical efficiency model or the cost efficiency model.This evaluation becomes problema...In the nonparametric data envelopment analysis literature,scale elasticity is evaluated in two alternative ways:using either the technical efficiency model or the cost efficiency model.This evaluation becomes problematic in several situations,for example(a)when input proportions change in the long run,(b)when inputs are heterogeneous,and(c)when firms face ex-ante price uncertainty in making their production decisions.To address these situations,a scale elasticity evaluation was performed using a value-based cost efficiency model.However,this alternative value-based scale elasticity evaluation is sensitive to the uncertainty and variability underlying input and output data.Therefore,in this study,we introduce a stochastic cost-efficiency model based on chance-constrained programming to develop a value-based measure of the scale elasticity of firms facing data uncertainty.An illustrative empirical application to the Indian banking industry comprising 71 banks for eight years(1998–2005)was made to compare inferences about their efficiency and scale properties.The key findings are as follows:First,both the deterministic model and our proposed stochastic model yield distinctly different results concerning the efficiency and scale elasticity scores at various tolerance levels of chance constraints.However,both models yield the same results at a tolerance level of 0.5,implying that the deterministic model is a special case of the stochastic model in that it reveals the same efficiency and returns to scale characterizations of banks.Second,the stochastic model generates higher efficiency scores for inefficient banks than its deterministic counterpart.Third,public banks exhibit higher efficiency than private and foreign banks.Finally,public and old private banks mostly exhibit either decreasing or constant returns to scale,whereas foreign and new private banks experience either increasing or decreasing returns to scale.Although the application of our proposed stochastic model is illustrative,it can be potentially applied to all firms in the information and distribution-intensive industry with high fixed costs,which have ample potential for reaping scale and scope benefits.展开更多
文摘“双碳”目标下,各类可再生能源发电技术发展迅速,综合权衡不同可再生能源发电方案的综合效益对可再生能源的优化设计具有重要意义。综合考虑经济效益、环境效益、能源效益和社会效益4个层面,提出了一种基于模糊决策试验和评价实验(decision making trial and evaluation laboratory,DEMATEL)与超效率数据包络分析(data envelopment analysis,DEA)模型的可再生能源发电技术综合效益评估方法。该方法分为投入-产出指标体系构建和综合评估2个阶段。首先,利用三角直觉模糊数处理模糊评价信息,将其与DEMATEL相结合量化各指标之间相互影响关系,基于指标间逻辑分析结果建立投入-产出评估指标体系。然后,基于超效率DEA模型对各可再生能源发电方案进行评估排序,结合投入冗余和产出不足分析结果给出各方案的针对性改善建议,以期为进一步选择和确定可再生能源产业发展战略提供参考。最后以某省10类可再生能源发电单元为研究对象,基于所提研究方法进行综合评估和分析,并与多准则妥协解排序法和熵权法进行对比分析,验证了所提方法的有效性。
文摘In the nonparametric data envelopment analysis literature,scale elasticity is evaluated in two alternative ways:using either the technical efficiency model or the cost efficiency model.This evaluation becomes problematic in several situations,for example(a)when input proportions change in the long run,(b)when inputs are heterogeneous,and(c)when firms face ex-ante price uncertainty in making their production decisions.To address these situations,a scale elasticity evaluation was performed using a value-based cost efficiency model.However,this alternative value-based scale elasticity evaluation is sensitive to the uncertainty and variability underlying input and output data.Therefore,in this study,we introduce a stochastic cost-efficiency model based on chance-constrained programming to develop a value-based measure of the scale elasticity of firms facing data uncertainty.An illustrative empirical application to the Indian banking industry comprising 71 banks for eight years(1998–2005)was made to compare inferences about their efficiency and scale properties.The key findings are as follows:First,both the deterministic model and our proposed stochastic model yield distinctly different results concerning the efficiency and scale elasticity scores at various tolerance levels of chance constraints.However,both models yield the same results at a tolerance level of 0.5,implying that the deterministic model is a special case of the stochastic model in that it reveals the same efficiency and returns to scale characterizations of banks.Second,the stochastic model generates higher efficiency scores for inefficient banks than its deterministic counterpart.Third,public banks exhibit higher efficiency than private and foreign banks.Finally,public and old private banks mostly exhibit either decreasing or constant returns to scale,whereas foreign and new private banks experience either increasing or decreasing returns to scale.Although the application of our proposed stochastic model is illustrative,it can be potentially applied to all firms in the information and distribution-intensive industry with high fixed costs,which have ample potential for reaping scale and scope benefits.