Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data...Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from five electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.展开更多
Big data has been taken as a Chinese national strategy in order to satisfy the developments of the social and economic requirements and the development of new information technology. The prosperity of big data brings ...Big data has been taken as a Chinese national strategy in order to satisfy the developments of the social and economic requirements and the development of new information technology. The prosperity of big data brings not only convenience to people's daily life and more opportunities to enterprises, but more challenges with information security as well. This paper has a research on new types and features of information security issues in the age of big data, and puts forward the solutions for the above issues: build up the big data security management platform, set up the establishment of information security system and implement relevant laws and regulations.展开更多
This paper explains the basic concepts of " Internet + " and big data,analyzes the main problems in the application of big data technology in agricultural informationization of Shandong Province,summarizes c...This paper explains the basic concepts of " Internet + " and big data,analyzes the main problems in the application of big data technology in agricultural informationization of Shandong Province,summarizes corresponding solutions from the aspects of government guidance,financial input,open sharing of agricultural big data,big data storage and processing,data mining,etc.,and prospects the application trend of big data technology in agricultural informationization to achieve the connotative development of agriculture in Shandong Province.展开更多
There has long been discussion about the distinctions of library science,information science,and informatics,and how these areas differ and overlap with computer science.Today the term data science is emerging that ge...There has long been discussion about the distinctions of library science,information science,and informatics,and how these areas differ and overlap with computer science.Today the term data science is emerging that generates excitement and questions about how it relates to and differs from these other areas of study.展开更多
经国内外专家深入探讨和反复论证,经主管、主办单位同意,经国家新闻出版广电总局正式批准(新广出审[2015]1187号文),由中国科学院文献情报中心主办的Chinese Journal of Library and Information Science(《中国文献情报(英)》,CJLIS)将...经国内外专家深入探讨和反复论证,经主管、主办单位同意,经国家新闻出版广电总局正式批准(新广出审[2015]1187号文),由中国科学院文献情报中心主办的Chinese Journal of Library and Information Science(《中国文献情报(英)》,CJLIS)将于2016年起正式更名为Journal of Data and Information Science(《数据与情报科学学报(英)》,JDIS)。作为国内唯一的图书馆学情报学领域英文学术期刊,CJLIS自2008年创刊以来,以刊发符合国际规范的高水平学术研究论文、推动中国图书馆学情报学学科发展为己任,组织优秀稿源、坚守学术规范、推动开放获取、严控评议流程,赢得了业界的充分肯定和广展开更多
The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq....The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
Purpose:The main objective of this work is to show the potentialities of recently developed approaches for automatic knowledge extraction directly from the universities’websites.The information automatically extracte...Purpose:The main objective of this work is to show the potentialities of recently developed approaches for automatic knowledge extraction directly from the universities’websites.The information automatically extracted can be potentially updated with a frequency higher than once per year,and be safe from manipulations or misinterpretations.Moreover,this approach allows us flexibility in collecting indicators about the efficiency of universities’websites and their effectiveness in disseminating key contents.These new indicators can complement traditional indicators of scientific research(e.g.number of articles and number of citations)and teaching(e.g.number of students and graduates)by introducing further dimensions to allow new insights for“profiling”the analyzed universities.Design/methodology/approach:Webometrics relies on web mining methods and techniques to perform quantitative analyses of the web.This study implements an advanced application of the webometric approach,exploiting all the three categories of web mining:web content mining;web structure mining;web usage mining.The information to compute our indicators has been extracted from the universities’websites by using web scraping and text mining techniques.The scraped information has been stored in a NoSQL DB according to a semistructured form to allow for retrieving information efficiently by text mining techniques.This provides increased flexibility in the design of new indicators,opening the door to new types of analyses.Some data have also been collected by means of batch interrogations of search engines(Bing,www.bing.com)or from a leading provider of Web analytics(SimilarWeb,http://www.similarweb.com).The information extracted from the Web has been combined with the University structural information taken from the European Tertiary Education Register(https://eter.joanneum.at/#/home),a database collecting information on Higher Education Institutions(HEIs)at European level.All the above was used to perform a clusterization of 79 Italian universities based on structural and digital indicators.Findings:The main findings of this study concern the evaluation of the potential in digitalization of universities,in particular by presenting techniques for the automatic extraction of information from the web to build indicators of quality and impact of universities’websites.These indicators can complement traditional indicators and can be used to identify groups of universities with common features using clustering techniques working with the above indicators.Research limitations:The results reported in this study refers to Italian universities only,but the approach could be extended to other university systems abroad.Practical implications:The approach proposed in this study and its illustration on Italian universities show the usefulness of recently introduced automatic data extraction and web scraping approaches and its practical relevance for characterizing and profiling the activities of universities on the basis of their websites.The approach could be applied to other university systems.Originality/value:This work applies for the first time to university websites some recently introduced techniques for automatic knowledge extraction based on web scraping,optical character recognition and nontrivial text mining operations(Bruni&Bianchi,2020).展开更多
Purpose: This paper relates the definition of data quality procedures for knowledge organizations such as Higher Education Institutions. The main purpose is to present the flexible approach developed for monitoring th...Purpose: This paper relates the definition of data quality procedures for knowledge organizations such as Higher Education Institutions. The main purpose is to present the flexible approach developed for monitoring the data quality of the European Tertiary Education Register(ETER) database, illustrating its functioning and highlighting the main challenges that still have to be faced in this domain.Design/methodology/approach: The proposed data quality methodology is based on two kinds of checks, one to assess the consistency of cross-sectional data and the other to evaluate the stability of multiannual data. This methodology has an operational and empirical orientation. This means that the proposed checks do not assume any theoretical distribution for the determination of the threshold parameters that identify potential outliers, inconsistencies, and errors in the data. Findings: We show that the proposed cross-sectional checks and multiannual checks are helpful to identify outliers, extreme observations and to detect ontological inconsistencies not described in the available meta-data. For this reason, they may be a useful complement to integrate the processing of the available information.Research limitations: The coverage of the study is limited to European Higher Education Institutions. The cross-sectional and multiannual checks are not yet completely integrated.Practical implications: The consideration of the quality of the available data and information is important to enhance data quality-aware empirical investigations, highlighting problems, and areas where to invest for improving the coverage and interoperability of data in future data collection initiatives.Originality/value: The data-driven quality checks proposed in this paper may be useful as a reference for building and monitoring the data quality of new databases or of existing databases available for other countries or systems characterized by high heterogeneity and complexity of the units of analysis without relying on pre-specified theoretical distributions.展开更多
In order to extract the boundary of rural habitation, based on geographic name data and basic geographic information data, an extraction method that use polygon aggregation is raised, it can extract the boundary of th...In order to extract the boundary of rural habitation, based on geographic name data and basic geographic information data, an extraction method that use polygon aggregation is raised, it can extract the boundary of three levels of rural habitation consists of town, administrative village and nature village. The method first extracts the boundary of nature village by aggregating the resident polygon, then extracts the boundary of administrative village by aggregating the boundary of nature village, and last extracts the boundary of town by aggregating the boundary of administrative village. The related methods of extracting the boundary of those three levels rural habitation has been given in detail during the experiment with basic geographic information data and geographic name data. Experimental results show the method can be a reference for boundary extraction of rural habitation.展开更多
基金supported by the National Hi-tech Research and Development Program of China(863Program)(No.2007AA09Z310) National Natural Science Foundation of China(Grant No.40774029 40374024)+1 种基金 the Fundamental Research Funds for the Central Universities(Grant No.2010ZY53) the Program for New Century Excellent Talents in University(NCET)
文摘Based on the analysis of impedance tensor data, tipper data, and the conjugate gradient algorithm, we develop a three-dimensional (3D) conjugate gradient algorithm for inverting magnetotelluric full information data determined from five electric and magnetic field components and discuss the method to use the full information data for quantitative interpretation of 3D inversion results. Results from the 3D inversion of synthetic data indicate that the results from inverting full information data which combine the impedance tensor and tipper data are better than results from inverting only the impedance tensor data (or tipper data) in improving resolution and reliability. The synthetic examples also demonstrate the validity and stability of this 3D inversion algorithm.
基金supported by National Key Technology Support Program(No.2013BAD17B06)Major Program of National Social Science Fund(No.15ZDB154)
文摘Big data has been taken as a Chinese national strategy in order to satisfy the developments of the social and economic requirements and the development of new information technology. The prosperity of big data brings not only convenience to people's daily life and more opportunities to enterprises, but more challenges with information security as well. This paper has a research on new types and features of information security issues in the age of big data, and puts forward the solutions for the above issues: build up the big data security management platform, set up the establishment of information security system and implement relevant laws and regulations.
基金Supported by Science Research Foundation of Binzhou University(BZXYG1712,BZXYG1714)Teaching and Research Project(BZXYSYXM201606,BZXYWTXM201621)Soft Science Research Project of Shandong Province(2018RKB01136)
文摘This paper explains the basic concepts of " Internet + " and big data,analyzes the main problems in the application of big data technology in agricultural informationization of Shandong Province,summarizes corresponding solutions from the aspects of government guidance,financial input,open sharing of agricultural big data,big data storage and processing,data mining,etc.,and prospects the application trend of big data technology in agricultural informationization to achieve the connotative development of agriculture in Shandong Province.
文摘There has long been discussion about the distinctions of library science,information science,and informatics,and how these areas differ and overlap with computer science.Today the term data science is emerging that generates excitement and questions about how it relates to and differs from these other areas of study.
文摘经国内外专家深入探讨和反复论证,经主管、主办单位同意,经国家新闻出版广电总局正式批准(新广出审[2015]1187号文),由中国科学院文献情报中心主办的Chinese Journal of Library and Information Science(《中国文献情报(英)》,CJLIS)将于2016年起正式更名为Journal of Data and Information Science(《数据与情报科学学报(英)》,JDIS)。作为国内唯一的图书馆学情报学领域英文学术期刊,CJLIS自2008年创刊以来,以刊发符合国际规范的高水平学术研究论文、推动中国图书馆学情报学学科发展为己任,组织优秀稿源、坚守学术规范、推动开放获取、严控评议流程,赢得了业界的充分肯定和广
文摘The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金This work is developed with the support of the H2020 RISIS 2 Project(No.824091)and of the“Sapienza”Research Awards No.RM1161550376E40E of 2016 and RM11916B8853C925 of 2019.This article is a largely extended version of Bianchi et al.(2019)presented at the ISSI 2019 Conference held in Rome,2–5 September 2019.
文摘Purpose:The main objective of this work is to show the potentialities of recently developed approaches for automatic knowledge extraction directly from the universities’websites.The information automatically extracted can be potentially updated with a frequency higher than once per year,and be safe from manipulations or misinterpretations.Moreover,this approach allows us flexibility in collecting indicators about the efficiency of universities’websites and their effectiveness in disseminating key contents.These new indicators can complement traditional indicators of scientific research(e.g.number of articles and number of citations)and teaching(e.g.number of students and graduates)by introducing further dimensions to allow new insights for“profiling”the analyzed universities.Design/methodology/approach:Webometrics relies on web mining methods and techniques to perform quantitative analyses of the web.This study implements an advanced application of the webometric approach,exploiting all the three categories of web mining:web content mining;web structure mining;web usage mining.The information to compute our indicators has been extracted from the universities’websites by using web scraping and text mining techniques.The scraped information has been stored in a NoSQL DB according to a semistructured form to allow for retrieving information efficiently by text mining techniques.This provides increased flexibility in the design of new indicators,opening the door to new types of analyses.Some data have also been collected by means of batch interrogations of search engines(Bing,www.bing.com)or from a leading provider of Web analytics(SimilarWeb,http://www.similarweb.com).The information extracted from the Web has been combined with the University structural information taken from the European Tertiary Education Register(https://eter.joanneum.at/#/home),a database collecting information on Higher Education Institutions(HEIs)at European level.All the above was used to perform a clusterization of 79 Italian universities based on structural and digital indicators.Findings:The main findings of this study concern the evaluation of the potential in digitalization of universities,in particular by presenting techniques for the automatic extraction of information from the web to build indicators of quality and impact of universities’websites.These indicators can complement traditional indicators and can be used to identify groups of universities with common features using clustering techniques working with the above indicators.Research limitations:The results reported in this study refers to Italian universities only,but the approach could be extended to other university systems abroad.Practical implications:The approach proposed in this study and its illustration on Italian universities show the usefulness of recently introduced automatic data extraction and web scraping approaches and its practical relevance for characterizing and profiling the activities of universities on the basis of their websites.The approach could be applied to other university systems.Originality/value:This work applies for the first time to university websites some recently introduced techniques for automatic knowledge extraction based on web scraping,optical character recognition and nontrivial text mining operations(Bruni&Bianchi,2020).
基金support of the European Commission ETER Project (No. 934533-2017-AO8-CH)H2020 RISIS 2 project (No. 824091)。
文摘Purpose: This paper relates the definition of data quality procedures for knowledge organizations such as Higher Education Institutions. The main purpose is to present the flexible approach developed for monitoring the data quality of the European Tertiary Education Register(ETER) database, illustrating its functioning and highlighting the main challenges that still have to be faced in this domain.Design/methodology/approach: The proposed data quality methodology is based on two kinds of checks, one to assess the consistency of cross-sectional data and the other to evaluate the stability of multiannual data. This methodology has an operational and empirical orientation. This means that the proposed checks do not assume any theoretical distribution for the determination of the threshold parameters that identify potential outliers, inconsistencies, and errors in the data. Findings: We show that the proposed cross-sectional checks and multiannual checks are helpful to identify outliers, extreme observations and to detect ontological inconsistencies not described in the available meta-data. For this reason, they may be a useful complement to integrate the processing of the available information.Research limitations: The coverage of the study is limited to European Higher Education Institutions. The cross-sectional and multiannual checks are not yet completely integrated.Practical implications: The consideration of the quality of the available data and information is important to enhance data quality-aware empirical investigations, highlighting problems, and areas where to invest for improving the coverage and interoperability of data in future data collection initiatives.Originality/value: The data-driven quality checks proposed in this paper may be useful as a reference for building and monitoring the data quality of new databases or of existing databases available for other countries or systems characterized by high heterogeneity and complexity of the units of analysis without relying on pre-specified theoretical distributions.
文摘In order to extract the boundary of rural habitation, based on geographic name data and basic geographic information data, an extraction method that use polygon aggregation is raised, it can extract the boundary of three levels of rural habitation consists of town, administrative village and nature village. The method first extracts the boundary of nature village by aggregating the resident polygon, then extracts the boundary of administrative village by aggregating the boundary of nature village, and last extracts the boundary of town by aggregating the boundary of administrative village. The related methods of extracting the boundary of those three levels rural habitation has been given in detail during the experiment with basic geographic information data and geographic name data. Experimental results show the method can be a reference for boundary extraction of rural habitation.