Expenditure on wells constitute a significant part of the operational costs for a petroleum enterprise, where most of the cost results from drilling. This has prompted drilling departments to continuously look for wa...Expenditure on wells constitute a significant part of the operational costs for a petroleum enterprise, where most of the cost results from drilling. This has prompted drilling departments to continuously look for ways to reduce their drilling costs and be as efficient as possible. A system called the Drilling Comprehensive Information Management and Application System (DCIMAS) is developed and presented here, with an aim at collecting, storing and making full use of the valuable well data and information relating to all drilling activities and operations. The DCIMAS comprises three main parts, including a data collection and transmission system, a data warehouse (DW) management system, and an integrated platform of core applications. With the support of the application platform, the DW management system is introduced, whereby the operation data are captured at well sites and transmitted electronically to a data warehouse via transmission equipment and ETL (extract, transformation and load) tools. With the high quality of the data guaranteed, our central task is to make the best use of the operation data and information for drilling analysis and to provide further information to guide later production stages. Applications have been developed and integrated on a uniform platform to interface directly with different layers of the multi-tier DW. Now, engineers in every department spend less time on data handling and more time on applying technology in their real work with the system.展开更多
Data warehouse provides storage and management for mass data, but data schema evolves with time on. When data schema is changed, added or deleted, the data in data warehouse must comply with the changed data schema, ...Data warehouse provides storage and management for mass data, but data schema evolves with time on. When data schema is changed, added or deleted, the data in data warehouse must comply with the changed data schema, so data warehouse must be re organized or re constructed, but this process is exhausting and wasteful. In order to cope with these problems, this paper develops an approach to model data cube with XML, which emerges as a universal format for data exchange on the Web and which can make data warehouse flexible and scalable. This paper also extends OLAP algebra for XML based data cube, which is called X OLAP.展开更多
A uniform metadata representation is introduced for heterogeneous databases, multi media information and other information sources. Some features about metadata are analyzed. The limitation of existing metadata model...A uniform metadata representation is introduced for heterogeneous databases, multi media information and other information sources. Some features about metadata are analyzed. The limitation of existing metadata model is compared with the new one. The metadata model is described in XML which is fit for metadata denotation and exchange. The well structured data, semi structured data and those exterior file data without structure are described in the metadata model. The model provides feasibility and extensibility for constructing uniform metadata model of data warehouse.展开更多
Data warehouse (DW), a new technology invented in 1990s, is more useful for integrating and analyzing massive data than traditional database. Its application in geology field can be divided into 3 phrases: 1992-1996,...Data warehouse (DW), a new technology invented in 1990s, is more useful for integrating and analyzing massive data than traditional database. Its application in geology field can be divided into 3 phrases: 1992-1996, commercial data warehouse (CDW) appeared; 1996-1999, geological data warehouse (GDW) appeared and the geologists or geographers realized the importance of DW and began the studies on it, but the practical DW still followed the framework of DB; 2000 to present, geological data warehouse grows, and the theory of geo-spatial data warehouse (GSDW) has been developed but the research in geological area is still deficient except that in geography. Although some developments of GDW have been made, its core still follows the CDW-organizing data by time and brings about 3 problems: difficult to integrate the geological data, for the data feature more space than time; hard to store the massive data in different levels due to the same reason; hardly support the spatial analysis if the data are organized by time as CDW does. So the GDW should be redesigned by organizing data by scale in order to store mass data in different levels and synthesize the data in different granularities, and choosing space control points to replace the former time control points so as to integrate different types of data by the method of storing one type data as one layer and then to superpose the layers. In addition, data cube, a wide used technology in CDW, will be no use in GDW, for the causality among the geological data is not so obvious as commercial data, as the data are the mixed result of many complex rules, and their analysis always needs the special geological methods and software; on the other hand, data cube for mass and complex geo-data will devour too much store space to be practical. On this point, the main purpose of GDW may be fit for data integration unlike CDW for data analysis.展开更多
For a data cube there are always constraints between dimensions or among attributes in a dimension, such as functional dependencies. We introduce the problem that when there are functional dependencies, how to use the...For a data cube there are always constraints between dimensions or among attributes in a dimension, such as functional dependencies. We introduce the problem that when there are functional dependencies, how to use them to speed up the computation of sparse data cubes. A new algorithm CFD (Computation by Functional Dependencies) is presented to satisfy this demand. CFD determines the order of dimensions by considering cardinalities of dimensions and functional dependencies between dimensions together, thus reduce the number of partitions for such dimensions. CFD also combines partitioning from bottom to up and aggregate computation from top to bottom to speed up the computation further. CFD can efficiently compute a data cube with hierarchies in a dimension from the smallest granularity to the coarsest one. Key words sparse data cube - functional dependency - dimension - partition - CFD CLC number TP 311 Foundation item: Supported by the E-Government Project of the Ministry of Science and Technology of China (2001BA110B01)Biography: Feng Yu-cai (1945-), male, Professor, research direction: database system.展开更多
This paper describes the process of design and construction of a data warehouse(“DW”)for an online learning platform using three prominent technologies,Microsoft SQL Server,MongoDB and Apache Hive.The three systems ...This paper describes the process of design and construction of a data warehouse(“DW”)for an online learning platform using three prominent technologies,Microsoft SQL Server,MongoDB and Apache Hive.The three systems are evaluated for corpus construction and descriptive analytics.The case also demonstrates the value of evidence-centered design principles for data warehouse design that is sustainable enough to adapt to the demands of handling big data in a variety of contexts.Additionally,the paper addresses maintainability-performance tradeoff,storage considerations and accessibility of big data corpora.In this NSF-sponsored work,the data were processed,transformed,and stored in the three versions of a data warehouse in search for a better performing and more suitable platform.The data warehouse engines-a relational database,a No-SQL database,and a big data technology for parallel computations-were subjected to principled analysis.Design,construction and evaluation of a data warehouse were scrutinized to find improved ways of storing,organizing and extracting information.The work also examines building corpora,performing ad-hoc extractions,and ensuring confidentiality.It was found that Apache Hive demonstrated the best processing time followed by SQL Server and MongoDB.In the aspect of analytical queries,the SQL Server was a top performer followed by MongoDB and Hive.This paper also discusses a novel process for render students anonymity complying with Family Educational Rights and Privacy Act regulations.Five phases for DW design are recommended:1)Establishing goals at the outset based on Evidence-Centered Design principles;2)Recognizing the unique demands of student data and use;3)Adopting a model that integrates cost with technical considerations;4)Designing a comparative database and 5)Planning for a DW design that is sustainable.Recommendations for future research include attempting DW design in contexts involving larger data sets,more refined operations,and ensuring attention is paid to sustainability of operations.展开更多
Since 1990s,the spatial data warehouse technology has rapidly been developing, but due to the complexity of multi-dimensional analysis, extensive application of the spatial data warehouse technology is affected. In th...Since 1990s,the spatial data warehouse technology has rapidly been developing, but due to the complexity of multi-dimensional analysis, extensive application of the spatial data warehouse technology is affected. In the light of the characteristics of the flood control and disaster mitigation in the Yangtze river basin, it is proposed to design a scheme about the subjects and data distribution of the spatial data warehouse of the flood control and disaster mitigation in Yangtze river basin, i.e., to adopt a distributed scheme. The creation and development of the spatial data warehouse of the flood control and disaster mitigation in Yangtze river basin is presented .The necessity and urgency of establishing the spatial data warehouse is expounded from the viewpoint of the present situation being short of available information for the flood control and disaster mitigation in Yangtze river basin.展开更多
Engineering data are separately organized and their schemas are increasingly complex and variable. Engineering data management systems are needed to be able to manage the unified data and to be both customizable and e...Engineering data are separately organized and their schemas are increasingly complex and variable. Engineering data management systems are needed to be able to manage the unified data and to be both customizable and extensible. The design of the systems is heavily dependent on the flexibility and self-description of the data model. The characteristics of engineering data and their management facts are analyzed. Then engineering data warehouse (EDW) architecture and multi-layer metamodels are presented. Also an approach to manage anduse engineering data by a meta object is proposed. Finally, an application flight test EDW system (FTEDWS) is described and meta-objects to manage engineering data in the data warehouse are used. It shows that adopting a meta-modeling approach provides a support for interchangeability and a sufficiently flexible environment in which the system evolution and the reusability can be handled.展开更多
On the bas is of the reality of material supply management of the coal enterprise, this paper expounds plans of material management systems based on specific IT, and indicates the deficiencies, the problems of them an...On the bas is of the reality of material supply management of the coal enterprise, this paper expounds plans of material management systems based on specific IT, and indicates the deficiencies, the problems of them and the necessity of improving them. The structure, models and data organizing schema of the material management decision support system are investigated based on a new data management technology (data warehousing technology).展开更多
To efficiently solve the materialized view selection problem, an optimal genetic algorithm of how to select a set of views to be materialized is proposed so as to achieve both good query performance and low view maint...To efficiently solve the materialized view selection problem, an optimal genetic algorithm of how to select a set of views to be materialized is proposed so as to achieve both good query performance and low view maintenance cost under a storage space constraint. First, a pre-processing algorithm based on the maximum benefit per unit space is used to generate initial solutions. Then, the initial solutions are improved by the genetic algorithm having the mixture of optimal strategies. Furthermore, the generated infeasible solutions during the evolution process are repaired by loss function. The experimental results show that the proposed algorithm outperforms the heuristic algorithm and canonical genetic algorithm in finding optimal solutions.展开更多
Objective: To establish an interactive management model for community-oriented high-risk osteoporosis in conjunction with a rural community health service center. Materials and Methods: Toward multidimensional analysi...Objective: To establish an interactive management model for community-oriented high-risk osteoporosis in conjunction with a rural community health service center. Materials and Methods: Toward multidimensional analysis of data, the system we developed combines basic principles of data warehouse technology oriented to the needs of community health services. This paper introduces the steps we took in constructing the data warehouse;the case presented here is that of a district community health management information system in Changshu, Jiangsu Province, China. For our data warehouse, we chose the MySQL 4.5 relational database, the Browser/Server, (B/S) model, and hypertext preprocessor as the development tools. Results: The system allowed online analysis processing and next-stage work preparation, and provided a platform for data management, data query, online analysis, etc., in community health service center, specialist outpatient for osteoporosis, and health administration sectors. Conclusion: The users of remote management system and data warehouse can include community health service centers, osteoporosis departments of hospitals, and health administration departments;provide reference for policymaking of health administrators, residents’ health information, and intervention suggestions for general practitioners in community health service centers, patients’ follow-up information for osteoporosis specialists in general hospitals.展开更多
This paper investigates how to integrate Web data into a multidimensional data warehouse (cube) for comprehensive on-line analytical processing (OLAP) and decision making. An approach for Web data-based cube const...This paper investigates how to integrate Web data into a multidimensional data warehouse (cube) for comprehensive on-line analytical processing (OLAP) and decision making. An approach for Web data-based cube construction is proposed, which includes Web data modeling based on MIX ( Metadam based Integration model for data X-change ), generic and specific mapping rules design, and a transformation algorithm for mapping Web data to a multidimensional array. Besides, the structure and implementation of the prototype of a Web data base cube are discussed.展开更多
文摘Expenditure on wells constitute a significant part of the operational costs for a petroleum enterprise, where most of the cost results from drilling. This has prompted drilling departments to continuously look for ways to reduce their drilling costs and be as efficient as possible. A system called the Drilling Comprehensive Information Management and Application System (DCIMAS) is developed and presented here, with an aim at collecting, storing and making full use of the valuable well data and information relating to all drilling activities and operations. The DCIMAS comprises three main parts, including a data collection and transmission system, a data warehouse (DW) management system, and an integrated platform of core applications. With the support of the application platform, the DW management system is introduced, whereby the operation data are captured at well sites and transmitted electronically to a data warehouse via transmission equipment and ETL (extract, transformation and load) tools. With the high quality of the data guaranteed, our central task is to make the best use of the operation data and information for drilling analysis and to provide further information to guide later production stages. Applications have been developed and integrated on a uniform platform to interface directly with different layers of the multi-tier DW. Now, engineers in every department spend less time on data handling and more time on applying technology in their real work with the system.
文摘Data warehouse provides storage and management for mass data, but data schema evolves with time on. When data schema is changed, added or deleted, the data in data warehouse must comply with the changed data schema, so data warehouse must be re organized or re constructed, but this process is exhausting and wasteful. In order to cope with these problems, this paper develops an approach to model data cube with XML, which emerges as a universal format for data exchange on the Web and which can make data warehouse flexible and scalable. This paper also extends OLAP algebra for XML based data cube, which is called X OLAP.
文摘A uniform metadata representation is introduced for heterogeneous databases, multi media information and other information sources. Some features about metadata are analyzed. The limitation of existing metadata model is compared with the new one. The metadata model is described in XML which is fit for metadata denotation and exchange. The well structured data, semi structured data and those exterior file data without structure are described in the metadata model. The model provides feasibility and extensibility for constructing uniform metadata model of data warehouse.
文摘Data warehouse (DW), a new technology invented in 1990s, is more useful for integrating and analyzing massive data than traditional database. Its application in geology field can be divided into 3 phrases: 1992-1996, commercial data warehouse (CDW) appeared; 1996-1999, geological data warehouse (GDW) appeared and the geologists or geographers realized the importance of DW and began the studies on it, but the practical DW still followed the framework of DB; 2000 to present, geological data warehouse grows, and the theory of geo-spatial data warehouse (GSDW) has been developed but the research in geological area is still deficient except that in geography. Although some developments of GDW have been made, its core still follows the CDW-organizing data by time and brings about 3 problems: difficult to integrate the geological data, for the data feature more space than time; hard to store the massive data in different levels due to the same reason; hardly support the spatial analysis if the data are organized by time as CDW does. So the GDW should be redesigned by organizing data by scale in order to store mass data in different levels and synthesize the data in different granularities, and choosing space control points to replace the former time control points so as to integrate different types of data by the method of storing one type data as one layer and then to superpose the layers. In addition, data cube, a wide used technology in CDW, will be no use in GDW, for the causality among the geological data is not so obvious as commercial data, as the data are the mixed result of many complex rules, and their analysis always needs the special geological methods and software; on the other hand, data cube for mass and complex geo-data will devour too much store space to be practical. On this point, the main purpose of GDW may be fit for data integration unlike CDW for data analysis.
文摘For a data cube there are always constraints between dimensions or among attributes in a dimension, such as functional dependencies. We introduce the problem that when there are functional dependencies, how to use them to speed up the computation of sparse data cubes. A new algorithm CFD (Computation by Functional Dependencies) is presented to satisfy this demand. CFD determines the order of dimensions by considering cardinalities of dimensions and functional dependencies between dimensions together, thus reduce the number of partitions for such dimensions. CFD also combines partitioning from bottom to up and aggregate computation from top to bottom to speed up the computation further. CFD can efficiently compute a data cube with hierarchies in a dimension from the smallest granularity to the coarsest one. Key words sparse data cube - functional dependency - dimension - partition - CFD CLC number TP 311 Foundation item: Supported by the E-Government Project of the Ministry of Science and Technology of China (2001BA110B01)Biography: Feng Yu-cai (1945-), male, Professor, research direction: database system.
文摘This paper describes the process of design and construction of a data warehouse(“DW”)for an online learning platform using three prominent technologies,Microsoft SQL Server,MongoDB and Apache Hive.The three systems are evaluated for corpus construction and descriptive analytics.The case also demonstrates the value of evidence-centered design principles for data warehouse design that is sustainable enough to adapt to the demands of handling big data in a variety of contexts.Additionally,the paper addresses maintainability-performance tradeoff,storage considerations and accessibility of big data corpora.In this NSF-sponsored work,the data were processed,transformed,and stored in the three versions of a data warehouse in search for a better performing and more suitable platform.The data warehouse engines-a relational database,a No-SQL database,and a big data technology for parallel computations-were subjected to principled analysis.Design,construction and evaluation of a data warehouse were scrutinized to find improved ways of storing,organizing and extracting information.The work also examines building corpora,performing ad-hoc extractions,and ensuring confidentiality.It was found that Apache Hive demonstrated the best processing time followed by SQL Server and MongoDB.In the aspect of analytical queries,the SQL Server was a top performer followed by MongoDB and Hive.This paper also discusses a novel process for render students anonymity complying with Family Educational Rights and Privacy Act regulations.Five phases for DW design are recommended:1)Establishing goals at the outset based on Evidence-Centered Design principles;2)Recognizing the unique demands of student data and use;3)Adopting a model that integrates cost with technical considerations;4)Designing a comparative database and 5)Planning for a DW design that is sustainable.Recommendations for future research include attempting DW design in contexts involving larger data sets,more refined operations,and ensuring attention is paid to sustainability of operations.
文摘Since 1990s,the spatial data warehouse technology has rapidly been developing, but due to the complexity of multi-dimensional analysis, extensive application of the spatial data warehouse technology is affected. In the light of the characteristics of the flood control and disaster mitigation in the Yangtze river basin, it is proposed to design a scheme about the subjects and data distribution of the spatial data warehouse of the flood control and disaster mitigation in Yangtze river basin, i.e., to adopt a distributed scheme. The creation and development of the spatial data warehouse of the flood control and disaster mitigation in Yangtze river basin is presented .The necessity and urgency of establishing the spatial data warehouse is expounded from the viewpoint of the present situation being short of available information for the flood control and disaster mitigation in Yangtze river basin.
文摘Engineering data are separately organized and their schemas are increasingly complex and variable. Engineering data management systems are needed to be able to manage the unified data and to be both customizable and extensible. The design of the systems is heavily dependent on the flexibility and self-description of the data model. The characteristics of engineering data and their management facts are analyzed. Then engineering data warehouse (EDW) architecture and multi-layer metamodels are presented. Also an approach to manage anduse engineering data by a meta object is proposed. Finally, an application flight test EDW system (FTEDWS) is described and meta-objects to manage engineering data in the data warehouse are used. It shows that adopting a meta-modeling approach provides a support for interchangeability and a sufficiently flexible environment in which the system evolution and the reusability can be handled.
文摘On the bas is of the reality of material supply management of the coal enterprise, this paper expounds plans of material management systems based on specific IT, and indicates the deficiencies, the problems of them and the necessity of improving them. The structure, models and data organizing schema of the material management decision support system are investigated based on a new data management technology (data warehousing technology).
文摘To efficiently solve the materialized view selection problem, an optimal genetic algorithm of how to select a set of views to be materialized is proposed so as to achieve both good query performance and low view maintenance cost under a storage space constraint. First, a pre-processing algorithm based on the maximum benefit per unit space is used to generate initial solutions. Then, the initial solutions are improved by the genetic algorithm having the mixture of optimal strategies. Furthermore, the generated infeasible solutions during the evolution process are repaired by loss function. The experimental results show that the proposed algorithm outperforms the heuristic algorithm and canonical genetic algorithm in finding optimal solutions.
文摘Objective: To establish an interactive management model for community-oriented high-risk osteoporosis in conjunction with a rural community health service center. Materials and Methods: Toward multidimensional analysis of data, the system we developed combines basic principles of data warehouse technology oriented to the needs of community health services. This paper introduces the steps we took in constructing the data warehouse;the case presented here is that of a district community health management information system in Changshu, Jiangsu Province, China. For our data warehouse, we chose the MySQL 4.5 relational database, the Browser/Server, (B/S) model, and hypertext preprocessor as the development tools. Results: The system allowed online analysis processing and next-stage work preparation, and provided a platform for data management, data query, online analysis, etc., in community health service center, specialist outpatient for osteoporosis, and health administration sectors. Conclusion: The users of remote management system and data warehouse can include community health service centers, osteoporosis departments of hospitals, and health administration departments;provide reference for policymaking of health administrators, residents’ health information, and intervention suggestions for general practitioners in community health service centers, patients’ follow-up information for osteoporosis specialists in general hospitals.
基金The National Natural Science Foundation of China (No.60573165)
文摘This paper investigates how to integrate Web data into a multidimensional data warehouse (cube) for comprehensive on-line analytical processing (OLAP) and decision making. An approach for Web data-based cube construction is proposed, which includes Web data modeling based on MIX ( Metadam based Integration model for data X-change ), generic and specific mapping rules design, and a transformation algorithm for mapping Web data to a multidimensional array. Besides, the structure and implementation of the prototype of a Web data base cube are discussed.