In order to analyze the experimental cardiovascular signal with high accuracy, a system, integrating real-time monitoring and off-line further analysis, was developed and verified. The design, data processing and anal...In order to analyze the experimental cardiovascular signal with high accuracy, a system, integrating real-time monitoring and off-line further analysis, was developed and verified. The design, data processing and analysis methods as well as testing results are described. With 5 sampling frequency choices and 8 channel data acquisition, the system achieved high performances in beat-to-beat monitoring, signal processing and analysis. Tests were carried out to validate its performance in real-time monitoring, effectiveness of digital filters, QRS and blood pressure detection reliability, and RR-interval timing accuracy. The QRS detection rate was at least 99.46% for the records with few noises from MIT-BIH arrhythmia database using the algorithm for real-time monitoring, and no less than 96.43% for the records with some noises. In the condition that noise amplitude levels were less than 80%,the standard deviations for RR-interval timing were less than 1 ms with a generated ECG corrupted with various noises from MIT-BIH Noise Stress Test Database. Besides, the system is open for function expansion to meet further study-specific needs.展开更多
基金This work is supported by Beijing Natural Science Foundation (3052015)
文摘In order to analyze the experimental cardiovascular signal with high accuracy, a system, integrating real-time monitoring and off-line further analysis, was developed and verified. The design, data processing and analysis methods as well as testing results are described. With 5 sampling frequency choices and 8 channel data acquisition, the system achieved high performances in beat-to-beat monitoring, signal processing and analysis. Tests were carried out to validate its performance in real-time monitoring, effectiveness of digital filters, QRS and blood pressure detection reliability, and RR-interval timing accuracy. The QRS detection rate was at least 99.46% for the records with few noises from MIT-BIH arrhythmia database using the algorithm for real-time monitoring, and no less than 96.43% for the records with some noises. In the condition that noise amplitude levels were less than 80%,the standard deviations for RR-interval timing were less than 1 ms with a generated ECG corrupted with various noises from MIT-BIH Noise Stress Test Database. Besides, the system is open for function expansion to meet further study-specific needs.