Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculo...Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.展开更多
由于运动想象脑机接口(MI-BCI)范式不需要视觉刺激,应用MI-BCI范式在提高人机交互系统舒适度方面具有重要意义。为实现辅助设备的异步控制,提高模型的鲁棒性,减少通道使用数量以降低BCI系统输入的复杂性,提出一种基于通道组合(channel c...由于运动想象脑机接口(MI-BCI)范式不需要视觉刺激,应用MI-BCI范式在提高人机交互系统舒适度方面具有重要意义。为实现辅助设备的异步控制,提高模型的鲁棒性,减少通道使用数量以降低BCI系统输入的复杂性,提出一种基于通道组合(channel combination,CC)-数据对齐(euclidean space data alignment,EA)-多尺度全局卷积神经网络(multiscale global convolutional neural network,MGCNN)的运动想象脑电分类方法。通过引入大脑静息状态下的脑电信号,扩展MI-BCI输出指令集;利用CC将22通道脑电数据重构为左右对称通道加中间通道的3通道形式,重构后的数据经过EA方法规范后作为网络输入;构建多尺度卷积模块与全局卷积模块,并行提取脑电信号的局部特征和ERS/ERD全局特征;利用迁移学习提升模型的解码能力。结果表明:该方法在BCI Competition IV 2a数据集上达到了99.28%的平均准确率和0.99的Kappa值,提高了运动想象脑电分类精度,为在线异步运动想象脑机接口的应用与发展作出了贡献。展开更多
基金supported by a grant from the National Institute of Information and Communications Technology(NICT),Japan
文摘Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.
文摘由于运动想象脑机接口(MI-BCI)范式不需要视觉刺激,应用MI-BCI范式在提高人机交互系统舒适度方面具有重要意义。为实现辅助设备的异步控制,提高模型的鲁棒性,减少通道使用数量以降低BCI系统输入的复杂性,提出一种基于通道组合(channel combination,CC)-数据对齐(euclidean space data alignment,EA)-多尺度全局卷积神经网络(multiscale global convolutional neural network,MGCNN)的运动想象脑电分类方法。通过引入大脑静息状态下的脑电信号,扩展MI-BCI输出指令集;利用CC将22通道脑电数据重构为左右对称通道加中间通道的3通道形式,重构后的数据经过EA方法规范后作为网络输入;构建多尺度卷积模块与全局卷积模块,并行提取脑电信号的局部特征和ERS/ERD全局特征;利用迁移学习提升模型的解码能力。结果表明:该方法在BCI Competition IV 2a数据集上达到了99.28%的平均准确率和0.99的Kappa值,提高了运动想象脑电分类精度,为在线异步运动想象脑机接口的应用与发展作出了贡献。