Autoregressive (AR) modeling is applied to data extrapolation of radio frequency (RF) echo signals, and Burg algorithm, which can be computed in small amount and lead to a stable prediction filter, is used to estimate...Autoregressive (AR) modeling is applied to data extrapolation of radio frequency (RF) echo signals, and Burg algorithm, which can be computed in small amount and lead to a stable prediction filter, is used to estimate the prediction parameters of AR modeling. The complex data samples are directly extrapolated to obtain the extrapolated echo data in the frequency domain. The small rotating angle data extrapolation and the large rotating angular data extrapolation are considered separately in azimuth domain. The method of data extrapolation for the small rotating angle is the same as that in frequency domain, while the amplitude samples of large rotating angle echo data are extrapolated to obtain extrapolated echo amplitude, and the complex data of large rotating angle echo samples are extrapolated to get the extrapolated echo phase respectively. The calculation results show that the extrapolated echo data obtained by the above mentioned methods are accurate.展开更多
Imaging sea-bed sediment layers from echo data, which are collected by a system composed of a seismic profiler and a hydrophone streamer towed behind the profiler, is a way to reconstruct the structure of sedimeat lay...Imaging sea-bed sediment layers from echo data, which are collected by a system composed of a seismic profiler and a hydrophone streamer towed behind the profiler, is a way to reconstruct the structure of sedimeat layers with acoustic wav equation. The equation which describes the wave propagation is used for backward extrapolation of echo data observed at sea surface. When the medium is homogeneous or horizontally layered, time imaging approach is valid. However, in the case where a considerable lateral variation in velocity exists, the image section processed with the time approach does not represent the real structure, because of distortions caused by thin-lens effect similar as in optics. In this case, depth imaging approach must be used for both the time-shift correction of refraction terms and the convergence of diffractions simultaneously as wavefields are downward continued. As a result, the good image can be derived to determine the structure of sea-bed sediment layers.展开更多
文摘Autoregressive (AR) modeling is applied to data extrapolation of radio frequency (RF) echo signals, and Burg algorithm, which can be computed in small amount and lead to a stable prediction filter, is used to estimate the prediction parameters of AR modeling. The complex data samples are directly extrapolated to obtain the extrapolated echo data in the frequency domain. The small rotating angle data extrapolation and the large rotating angular data extrapolation are considered separately in azimuth domain. The method of data extrapolation for the small rotating angle is the same as that in frequency domain, while the amplitude samples of large rotating angle echo data are extrapolated to obtain extrapolated echo amplitude, and the complex data of large rotating angle echo samples are extrapolated to get the extrapolated echo phase respectively. The calculation results show that the extrapolated echo data obtained by the above mentioned methods are accurate.
文摘Imaging sea-bed sediment layers from echo data, which are collected by a system composed of a seismic profiler and a hydrophone streamer towed behind the profiler, is a way to reconstruct the structure of sedimeat layers with acoustic wav equation. The equation which describes the wave propagation is used for backward extrapolation of echo data observed at sea surface. When the medium is homogeneous or horizontally layered, time imaging approach is valid. However, in the case where a considerable lateral variation in velocity exists, the image section processed with the time approach does not represent the real structure, because of distortions caused by thin-lens effect similar as in optics. In this case, depth imaging approach must be used for both the time-shift correction of refraction terms and the convergence of diffractions simultaneously as wavefields are downward continued. As a result, the good image can be derived to determine the structure of sea-bed sediment layers.