期刊文献+
共找到198篇文章
< 1 2 10 >
每页显示 20 50 100
CALL FOR PAPERS Workshop on Intelligence and Security Informatics (WISI’06) in conjunction with the Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD’06)
1
《复杂系统与复杂性科学》 EI CSCD 2005年第1期84-86,共3页
Important Dates Submission due November 15, 2005 Notification of acceptance December 30, 2005 Camera-ready copy due January 10, 2006 Workshop Scope Intelligence and Security Informatics (ISI) can be broadly defined as... Important Dates Submission due November 15, 2005 Notification of acceptance December 30, 2005 Camera-ready copy due January 10, 2006 Workshop Scope Intelligence and Security Informatics (ISI) can be broadly defined as the study of the development and use of advanced information technologies and systems for national and international security-related applications. The First and Second Symposiums on ISI were held in Tucson,Arizona,in 2003 and 2004,respectively. In 2005,the IEEE International Conference on ISI was held in Atlanta,Georgia. These ISI conferences have brought together academic researchers,law enforcement and intelligence experts,information technology consultant and practitioners to discuss their research and practice related to various ISI topics including ISI data management,data and text mining for ISI applications,terrorism informatics,deception detection,terrorist and criminal social network analysis,crime analysis,monitoring and surveillance,policy studies and evaluation,information assurance,among others. We continue this stream of ISI conferences by organizing the Workshop on Intelligence and Security Informatics (WISI’06) in conjunction with the Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD’06). WISI’06 will provide a stimulating forum for ISI researchers in Pacific Asia and other regions of the world to exchange ideas and report research progress. The workshop also welcomes contributions dealing with ISI challenges specific to the Pacific Asian region. 展开更多
关键词 SECURITY in conjunction with the Pacific Asia Conference on knowledge discovery and data mining CALL FOR PAPERS Workshop on intelligence and Security Informatics ASIA
下载PDF
A New Approach for Knowledge Discovery in Distributed Databases Using Fragmented Data Storage Model
2
作者 Masoud Pesaran Behbahani Islam Choudhury Souheil Khaddaj 《Chinese Business Review》 2013年第12期834-845,共12页
Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new genera... Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new generations of databases. These models have a deep impact on evolving decision-support systems. But they suffer a variety of practical problems while accessing real-world data sources. Specifically a type of data storage model based on data distribution theory has been increasingly used in recent years by large-scale enterprises, while it is not compatible with existing decision-support models. This data storage model stores the data in different geographical sites where they are more regularly accessed. This leads to considerably less inter-site data transfer that can reduce data security issues in some circumstances and also significantly improve data manipulation transactions speed. The aim of this paper is to propose a new approach for supporting proactive decision-making that utilizes a workable data source management methodology. The new model can effectively organize and use complex data sources, even when they are distributed in different sites in a fragmented form. At the same time, the new model provides a very high level of intellectual management decision-support by intelligent use of the data collections through utilizing new smart methods in synthesizing useful knowledge. The results of an empirical study to evaluate the model are provided. 展开更多
关键词 data mining decision-support system distributed databases knowledge discovery in database (KDD)
下载PDF
基于网络环境的分布式KDD及Data Mining研究 被引量:6
3
作者 何炎祥 彭锋 +2 位作者 宋文欣 熊汉卫 陈莘萌 《小型微型计算机系统》 CSCD 北大核心 1999年第10期744-746,共3页
本文针对KDD 的研究现状及其面临的挑战,主要讨论了基于网络环境下,面向多个站点机、多种数据库、多类数据源的分布式KDD 和Data Mining 的整体方案和实验系统模型,研究内容包括高效分布式开采算法,KDD 过程的... 本文针对KDD 的研究现状及其面临的挑战,主要讨论了基于网络环境下,面向多个站点机、多种数据库、多类数据源的分布式KDD 和Data Mining 的整体方案和实验系统模型,研究内容包括高效分布式开采算法,KDD 过程的无缝集成,KDD 中的知识表示。 展开更多
关键词 知识发现 数据开采 知识表示 可视化 数据库系统
下载PDF
Integrated Solution for Discovery of Literature Information Knowledge
4
作者 徐慧 《International Journal of Mining Science and Technology》 SCIE EI 2000年第2期91-94,共4页
An integrated solution for discovery of literature information knowledge is proposed. The analytic model of literature Information model and discovery of literature information knowledge are illustrated. Practical ill... An integrated solution for discovery of literature information knowledge is proposed. The analytic model of literature Information model and discovery of literature information knowledge are illustrated. Practical illustrative example for discovery of literature information knowledge is given. 展开更多
关键词 knowledge discovery data mining data WAREHOUSE database Weh
下载PDF
Structural choice based on knowledge discovery system
5
作者 XING Fangliang(邢方亮) +1 位作者 WANG Guangyuan(王光远) 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第3期263-266,共4页
Structural choice is a significant decision having an important influence on structural function, social economics, structural reliability and construction cost. A Case Based Reasoning system with its retrieval part c... Structural choice is a significant decision having an important influence on structural function, social economics, structural reliability and construction cost. A Case Based Reasoning system with its retrieval part constructed with a KDD subsystem, is put forward to make a decision for a large scale engineering project. A typical CBR system consists of four parts: case representation, case retriever, evaluation, and adaptation. A case library is a set of parameterized excellent and successful structures. For a structural choice, the key point is that the system must be able to detect the pattern classes hidden in the case library and classify the input parameters into classes properly. That is done by using the KDD Data Mining algorithm based on Self Organizing Feature Maps (SOFM), which makes the whole system more adaptive, self organizing, self learning and open. 展开更多
关键词 knowledge discovery in database data mining SELF-ORGANIZING feature MAPS STRUCTURAL CHOICE
下载PDF
Taxpayers Fraudulent Behavior Modeling The Use of Datamining in Fiscal Fraud Detecting Moroccan Case
6
作者 Farid Ameur Mohamed Tkiouat 《Applied Mathematics》 2012年第10期1207-1213,共7页
The fraudulent behavior of taxpayers impacts negatively the resources available to finance public services. It creates distortions of competition and inequality, harming honest taxpayers. Such behavior requires the go... The fraudulent behavior of taxpayers impacts negatively the resources available to finance public services. It creates distortions of competition and inequality, harming honest taxpayers. Such behavior requires the government intervention to bring order and establish a fiscal justice. This study emphasizes the determination of the interactions linking taxpayers with tax authorities. We try to see how fiscal audit can influence taxpayers’ fraudulent behavior. First of all, we present a theoretical study of a model pre established by other authors. We have released some conditions of this model and we have introduced a new parameter reflecting the efficiency of tax control;we found that the efficiency of a fiscal control have an important effect on these interactions. Basing on the fact that the detection of fraudulent taxpayers is the most difficult step in fiscal control, We established a new approach using DATA MINING process in order to improve fiscal control efficiency. We found results that reflect fairly the conduct of taxpayers that we have tested based on actual statistics. The results are reliable. 展开更多
关键词 TAX FRAUD TAX EVASION data mining knowledge discovery in databases (KDD) FISCAL Policy FISCAL Reform FISCAL Control FISCAL Justice TAXPAYERS TAX Administration
下载PDF
Designing a Model to Study Data Mining in Distributed Environment
7
作者 Md. Abadur Rahman Masud Karim 《Journal of Data Analysis and Information Processing》 2021年第1期23-29,共7页
To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using d... To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using data mining to perform such tasks. Data mining techniques are used to find hidden information from large data source. Data mining is using for various fields: Artificial intelligence, Bank, health and medical, corruption, legal issues, corporate business, marketing, etc. Special interest is given to associate rules, data mining algorithms, decision tree and distributed approach. Data is becoming larger and spreading geographically. So it is difficult to find better result from only a central data source. For knowledge discovery, we have to work with distributed database. On the other hand, security and privacy considerations are also another factor for de-motivation of working with centralized data. For this reason, distributed database is essential for future processing. In this paper, we have proposed a framework to study data mining in distributed environment. The paper presents a framework to bring out actionable knowledge. We have shown some level by which we can generate actionable knowledge. Possible tools and technique for these levels are discussed. 展开更多
关键词 data mining Distributed database knowledge discovery Classification Algorithm
下载PDF
An Experimental Analysis of the Applications of Datamining Methods on Bigdata
8
作者 CH.Naga Santhosh Kumar K.S.Reddy 《Journal of Autonomous Intelligence》 2019年第3期31-39,共9页
Data mining is a procedure of separating covered up,obscure,however possibly valuable data from gigantic data.Huge Data impactsly affects logical disclosures and worth creation.Data mining(DM)with Big Data has been br... Data mining is a procedure of separating covered up,obscure,however possibly valuable data from gigantic data.Huge Data impactsly affects logical disclosures and worth creation.Data mining(DM)with Big Data has been broadly utilized in the lifecycle of electronic items that range from the structure and generation stages to the administration organize.A far reaching examination of DM with Big Data and a survey of its application in the phases of its lifecycle won't just profit scientists to create solid research.As of late huge data have turned into a trendy expression,which constrained the analysts to extend the current data mining methods to adapt to the advanced idea of data and to grow new scientific procedures.In this paper,we build up an exact assessment technique dependent on the standard of Design of Experiment.We apply this technique to assess data mining instruments and AI calculations towards structure huge data examination for media transmission checking data.Two contextual investigations are directed to give bits of knowledge of relations between the necessities of data examination and the decision of an instrument or calculation with regards to data investigation work processes. 展开更多
关键词 data mining Big data knowledge discovery databases Decision Tree Cloud data mining K-Closest Neighbor artificial intelligence CLUSTER
下载PDF
Human Body Information Database and Method of Application
9
作者 ZHANG Li LI Yanmei 《International English Education Research》 2016年第7期112-114,共3页
This paper elaborate the emergence of human information database and the important role it plays in the various industries of economic development. It also interpret the primary human information database of current d... This paper elaborate the emergence of human information database and the important role it plays in the various industries of economic development. It also interpret the primary human information database of current domestic and abroad and analysis it's classification characteristic, Besides, this papers further explains how to make use of human information database and how to make the database to play its due value. In the end, the prospect of our country's body information database has been set forth, using relatively mature foreign database to improve Chinese body information database. 展开更多
关键词 database human body information data mining knowledge discovery in database
下载PDF
Spatial data mining and visualization based on self-organizing map
10
作者 LIU Shu-ying OUYANG Hong-ji PENG Fang 《通讯和计算机(中英文版)》 2008年第12期55-60,共6页
关键词 空间数据分析 数据挖掘 可视化系统 分析方法
下载PDF
An Overview of Data Mining and Knowledge Discovery 被引量:8
11
作者 范建华 李德毅 《Journal of Computer Science & Technology》 SCIE EI CSCD 1998年第4期348-368,共21页
With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data ... With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data mining and knowledge discovery in databases. Several emerging applications in information providing services, such as data warehousing and on-line services over the Internet, also call for various data mining and knowledge discovery techniques to understand user behavior better, to improve the service provided, and to increase the business opportunities. In response to such a demand, this article is to provide a comprehensive survey on the data mining and knowledge discovery techniques developed recently, and introduce some real application systems as well. In conclusion, this article also lists some problems and challenges for further research. 展开更多
关键词 knowledge discovery in databases data mining machine learning association rule CLASSIFICATION data clustering data generalization pattern searching
原文传递
The application of big data and the development of nursing science: A discussion paper 被引量:5
12
作者 Ruifang Zhu Shifan Han +3 位作者 Yanbing Su Chichen Zhang Qi Yu Zhiguang Duan 《International Journal of Nursing Sciences》 CSCD 2019年第2期229-234,共6页
Based on the concept and research status of big data,we analyze and examine the importance of constructing the knowledge system of nursing science for the development of the nursing discipline in the context of big da... Based on the concept and research status of big data,we analyze and examine the importance of constructing the knowledge system of nursing science for the development of the nursing discipline in the context of big data and propose that it is necessary to establish big data centers for nursing science to share resources,unify language standards,improve professional nursing databases,and establish a knowledge system structure. 展开更多
关键词 artificial intelligence data mining knowledge bases NURSING
下载PDF
新一代人工智能驱动档案信息化建设的现状和趋势探讨——基于医疗机构的考察 被引量:2
13
作者 王雨 《档案管理》 北大核心 2024年第2期88-90,94,共4页
探讨新一代人工智能技术在档案信息化建设中的应用现状和趋势,并以医疗机构为调查对象进行实证分析。通过分析新一代人工智能技术在档案信息化建设中的应用现状和趋势,结合在医疗机构的调查分析,提出了调查设计和方法,并进行了调查结果... 探讨新一代人工智能技术在档案信息化建设中的应用现状和趋势,并以医疗机构为调查对象进行实证分析。通过分析新一代人工智能技术在档案信息化建设中的应用现状和趋势,结合在医疗机构的调查分析,提出了调查设计和方法,并进行了调查结果统计和分析。探讨了医疗档案信息化建设的特点和需求,分析了新一代人工智能技术在医疗档案信息化建设中的现状、趋势、挑战和未来的发展方向,提出了新一代人工智能技术驱动档案信息化建设建议和展望。 展开更多
关键词 人工智能 档案信息化 数字化 医疗机构 协同创新 健康管理 数据挖掘 知识服务
下载PDF
基于CiteSpace的地质大数据与人工智能研究热点及前沿分析 被引量:2
14
作者 朱彪彪 曹伟 +6 位作者 虞鹏鹏 张前龙 郭兰萱 原桂强 韩枫 王汉雨 周永章 《地学前缘》 EI CAS CSCD 北大核心 2024年第4期73-86,共14页
为研究地质学领域的大数据和人工智能研究现状、热点和前沿,在中国知网(CNKI)核心期刊和Web of Science(WoS)核心数据库收集了2000—2022年相关中文文献3600篇、英文文献1803篇,利用社区结构分析软件CiteSpace,从合作作者、研究国家、... 为研究地质学领域的大数据和人工智能研究现状、热点和前沿,在中国知网(CNKI)核心期刊和Web of Science(WoS)核心数据库收集了2000—2022年相关中文文献3600篇、英文文献1803篇,利用社区结构分析软件CiteSpace,从合作作者、研究国家、研究机构、关键词聚类、关键词时空分布图谱等进行可视化分析,并统计了2021—2022年间,地质学领域国际顶级期刊(综合影响因子10以上)的文献进行前沿分析。分析结果表明,近10年内该研究领域全球累计发文量激增,以中国为代表的亚洲国家和以美国为代表的欧美国家研究为主,双方累计发文量相差不大,论文中介中心性欧美国家普遍较高。我国研究机构之间的交流合作居多,与国外的研究机构交流合作较少,国外研究机构则与之相反。该领域以应用机器学习类方法、知识图谱构建等,在地质灾害防治、地震解释、石油与天然气勘查、固体矿产资源预测等方向进行的科学研究为研究热点,以深度学习、集成学习、智能平台搭建等为手段的地球演化过程中的重大地质事件研究、全球性气候变化、极地及海洋地质研究、数字地质建模及定量分析、地震预报、地灾易发性精准评估等为研究前沿。 展开更多
关键词 地质大数据 人工智能 知识图谱 CITESPACE 社区发现 可视化
下载PDF
基因组挖掘指导天然药物分子的发现 被引量:2
15
作者 奚萌宇 胡逸灵 +1 位作者 顾玉诚 戈惠明 《合成生物学》 CSCD 北大核心 2024年第3期447-473,共27页
天然产物是临床药物的主要来源,也是新药研发过程中先导化合物结构设计和优化的灵感源泉。但传统策略天然药源分子的发现却遭遇了瓶颈,新颖天然产物的数量逐渐无法满足现代药物开发的需求和应对全球多药耐药的威胁。随着测序技术的快速... 天然产物是临床药物的主要来源,也是新药研发过程中先导化合物结构设计和优化的灵感源泉。但传统策略天然药源分子的发现却遭遇了瓶颈,新颖天然产物的数量逐渐无法满足现代药物开发的需求和应对全球多药耐药的威胁。随着测序技术的快速迭代,生物学的研究进入了基因组时代,基因组挖掘指导天然产物定向发现的策略得以确立,成功摆脱了传统天然产物发现策略对于生物样本生物量的依赖,极大提高了活性天然产物发现的特异性和成功率。本文简述了基因组挖掘以及相关数据库和生物信息学工具的发展,详细介绍了包括基于核心基因或后修饰基因的经典挖掘手段,自抗性机制、进化理论指导的基因组挖掘和人工智能在活性天然产物发现中的具体应用,并对基因组挖掘在药物发现和多学科交叉领域的影响和发展进行了展望。基因组信息中蕴藏着无可估量的化学潜能,促进基因组挖掘与其他学科间的交叉融合,提升对遗传信息的处理和分析能力,增强下游基因簇表达通量和产物结构预测能力,可实现天然小分子高通量、高新颖性和高效率的发现,为开发具有自主知识产权的新药物、新化学品和新型酶催化剂服务。 展开更多
关键词 基因组挖掘 天然产物 药物发现 生物合成 人工智能 数据库
下载PDF
数据挖掘发展研究 被引量:25
16
作者 张伟 刘勇国 +2 位作者 彭军 廖晓峰 吴中福 《计算机科学》 CSCD 北大核心 2001年第7期79-81,94,共4页
Mining knowledge from database has been thought as a key research issue in database system. Great mterest has been paid in data mining by researchers in different fields. In this paper,data mining techniques are intro... Mining knowledge from database has been thought as a key research issue in database system. Great mterest has been paid in data mining by researchers in different fields. In this paper,data mining techniques are introduced broadly including its definition,purpose,characteristic, principal processes and classifications. As an example,the studies on the mining association rules are illustrated. At last,some data mining prototypes are provided and several research trends on the data mining are discussed. 展开更多
关键词 数据挖掘 知识发现 数据库 机器学习
下载PDF
数据挖掘综述 被引量:262
17
作者 王光宏 蒋平 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第2期246-252,共7页
从人工智能、统计分析和数据库技术3个方面对数据挖掘技术进行了总结;从模式识别的角度讨论了数据挖掘技术的主要任务,包括分类、聚类、回归、关联、序列和偏差6种模式的识别.详细介绍了数据挖掘技术的常用方法,包括模糊理论、粗糙集理... 从人工智能、统计分析和数据库技术3个方面对数据挖掘技术进行了总结;从模式识别的角度讨论了数据挖掘技术的主要任务,包括分类、聚类、回归、关联、序列和偏差6种模式的识别.详细介绍了数据挖掘技术的常用方法,包括模糊理论、粗糙集理论、云理论、证据理论、人工神经网络、遗传算法以及归纳学习.列举了当前数据挖掘技术的实际应用场合,并指出其今后的发展趋势以及急需关注的问题. 展开更多
关键词 数据挖掘 数据库中知识发现 人工智能 模式
下载PDF
基于Web的数据采掘 被引量:22
18
作者 王利强 唐常杰 +1 位作者 于中华 何雪梅 《计算机应用》 CSCD 1998年第10期9-12,共4页
本文论述了知识发现和数据采掘的概念以及所使用的技术,并分析了在Internet进行数据采掘的特点和难点。最后,介绍了我们自己开发的WebMiner系统的结构和用到的技术。
关键词 数据采掘 数据库 知识发现 WEB INTERNET网
下载PDF
模糊粗糙集理论在变压器故障诊断中的应用 被引量:36
19
作者 熊浩 李卫国 +1 位作者 畅广辉 郭惠敏 《中国电机工程学报》 EI CSCD 北大核心 2008年第7期141-147,共7页
提出一种改进的三比值变压器故障诊断方法。以模糊粗糙集为数学基础建立信息决策系统,采用数据挖掘技术解决这一建立过程中的若干问题。考虑到信息源的连续取值对模糊粗糙推理的影响,利用模糊集方法处理连续取值型属性。利用数据库知识... 提出一种改进的三比值变压器故障诊断方法。以模糊粗糙集为数学基础建立信息决策系统,采用数据挖掘技术解决这一建立过程中的若干问题。考虑到信息源的连续取值对模糊粗糙推理的影响,利用模糊集方法处理连续取值型属性。利用数据库知识发现技术挖掘数据库中隐含的聚类信息,设置属性的模糊取值并确定隶属函数。并在此基础上基于包含度对模糊规则进行约简和剔除。设计了适用于模糊粗糙规则提取的数据挖掘算法,从数据库中提取规则,按属性集建立多表决策库的拓扑结构。诊断结果表明,该决策库故障正判率较高,模糊判断规则适应现场条件。 展开更多
关键词 数据库知识发现 溶解气体分析 模糊粗糙集 据挖掘
下载PDF
数据挖掘与数据库知识发现:统计学的观点 被引量:28
20
作者 马江洪 张文修 徐宗本 《工程数学学报》 CSCD 北大核心 2002年第1期1-13,共13页
数据挖掘和数据库知识发现是当前国际科技界的一个研究热点。这是一个介于统计学、模式识别、人工智能、机器学习、数据库技术以及高性能并行计算等领域的交叉新兴学科 ,具有极为广泛的应用前景。从统计学的角度来透视其中相关的统计问... 数据挖掘和数据库知识发现是当前国际科技界的一个研究热点。这是一个介于统计学、模式识别、人工智能、机器学习、数据库技术以及高性能并行计算等领域的交叉新兴学科 ,具有极为广泛的应用前景。从统计学的角度来透视其中相关的统计问题 ,提出了传统统计学面临的挑战 。 展开更多
关键词 数据挖掘 统计学 数据库 知识发现
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部