This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the L...This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the LERS inductive learning algorithm, it also introduces a generalized quasi incremental algorithm for learning classification rules from data bases.展开更多
Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data...Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world.展开更多
Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input...Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing.展开更多
Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in d...Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in decision making. Risk assessment is very important for safe and reliable investment. Risk management involves assessing the risk sources and designing strategies and procedures to mitigate those risks to an acceptable level. In this paper, we emphasize on classification of different types of risk factors and find a simple and effective way to calculate the risk exposure.. The study uses rough set method to classify and judge the safety attributes related to investment policy. The method which based on intelligent knowledge accusation provides an innovative way for risk analysis. From this approach, we are able to calculate the significance of each factor and relative risk exposure based on the original data without assigning the weight subjectively.展开更多
The governing factors that influence landslide occurrences are complicated by the different soil conditions at various sites.To resolve the problem,this study focused on spatial information technology to collect data ...The governing factors that influence landslide occurrences are complicated by the different soil conditions at various sites.To resolve the problem,this study focused on spatial information technology to collect data and information on geology.GIS,remote sensing and digital elevation model(DEM) were used in combination to extract the attribute values of the surface material in the vast study area of SheiPa National Park,Taiwan.The factors influencing landslides were collected and quantification values computed.The major soil component of loam and gravel in the Shei-Pa area resulted in different landslide problems.The major factors were successfully extracted from the influencing factors.Finally,the discrete rough set(DRS) classifier was used as a tool to find the threshold of each attribute contributing to landslide occurrence,based upon the knowledge database.This rule-based knowledge database provides an effective and urgent system to manage landslides.NDVI(Normalized Difference Vegetation Index),VI(Vegetation Index),elevation,and distance from the road are the four major influencing factors for landslide occurrence.The landslide hazard potential diagrams(landslide susceptibility maps) were drawn and a rational accuracy rate of landslide was calculated.This study thus offers a systematic solution to the investigation of landslide disasters.展开更多
The technique of data mining was provided to predict gas disaster in view of the characteristics of coal mine gas disaster and feature knowledge based on gas disaster. The rough set theory was used to establish data m...The technique of data mining was provided to predict gas disaster in view of the characteristics of coal mine gas disaster and feature knowledge based on gas disaster. The rough set theory was used to establish data mining model of gas disaster prediction, and rough set attributes relations was discussed in prediction model of gas disaster to supplement the shortages of rough intensive reduction method by using information en- tropy criteria.The effectiveness and practicality of data mining technology in the prediction of gas disaster is confirmed through practical application.展开更多
Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been us...Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone,requiring no additional information. This paper describes the fundamental ideas behind RST-based approaches,reviews related FS methods built on these ideas,and analyses more frequently used RST-based traditional FS algorithms such as Quickreduct algorithm,entropy based reduct algorithm,and relative reduct algorithm. It is found that some of the drawbacks in the existing algorithms and our proposed improved algorithms can overcome these drawbacks. The experimental analyses have been carried out in order to achieve the efficiency of the proposed algorithms.展开更多
Springback of sheet metal induced by elastic recovery is one of major defects in sheet metal forming processed. Springback is influenced by many factors including properties of the sheet material and processing condit...Springback of sheet metal induced by elastic recovery is one of major defects in sheet metal forming processed. Springback is influenced by many factors including properties of the sheet material and processing conditions. In this paper, a springback simulation was conducted and comparisons between the results based on different processing variables were illustrated. The discovery of knowledge of the effects of geometry and process parameters on springback from FEM results becomes increasingly important, as the number of numerical simulation has grown exponentially. Data mining is an effective tool to realize knowledge discovery in simulation results. A data-mining algorithm, rough sets theory (RST), was applied to analyze the effects of process parameters on springback in U-bending.展开更多
Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features ma...Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. The conventional supervised FS methods evaluate various feature subsets using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. In this paper, we propose a new unsupervised quick reduct (QR) algorithm using rough set theory. The quality of the reduced data is measured by the classification performance and it is evaluated using WEKA classifier tool. The method is compared with existing supervised methods and the result demonstrates the efficiency of the proposed algorithm.展开更多
An improvement of tolerance relation is proposed in regard to rough set model based on connection degree by which reflexivity of relation can be assured without loss of information. Then, a method to determine optimal...An improvement of tolerance relation is proposed in regard to rough set model based on connection degree by which reflexivity of relation can be assured without loss of information. Then, a method to determine optimal identity degree based on relative positive region is proposed so that the identity degree can be computed in an objective method without any preliminary or additional information about data, which is consistent with the notion of objectivity in rough set theory and data mining theory. Subsequently, an algorithm is proposed, and in two examples, the global optimum identity degree is found out. Finally, in regard to optimum connection degree, the method of rules extraction for connection degree rough set model based on generalization function is presented by which the rules extracted from a decision table are enumerated.展开更多
Land resources are facing crises of being misused,especially for an intersection area between town and country,and land control has to be enforced.This paper presents a development of data mining method for land contr...Land resources are facing crises of being misused,especially for an intersection area between town and country,and land control has to be enforced.This paper presents a development of data mining method for land control.A vector_match method for the prerequisite of data mining i.e., data cleaning is proposed,which deals with both character and numeric data via vectorizing character_string and matching number.A minimal decision algorithm of rough set is used to discover the knowledge hidden in the data warehouse.In order to monitor land use dynamically and accurately,it is suggested to set up a real_time land control system based on GPS,digital photogrammetry and online data mining.Finally,the means is applied in the intersection area between town and country of Wuhan city,and a set of knowledge about land control is discovered.展开更多
文摘This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the LERS inductive learning algorithm, it also introduces a generalized quasi incremental algorithm for learning classification rules from data bases.
文摘Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world.
基金the National Natural Science Foundation of China (Grant No. 50128706).
文摘Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing.
文摘Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in decision making. Risk assessment is very important for safe and reliable investment. Risk management involves assessing the risk sources and designing strategies and procedures to mitigate those risks to an acceptable level. In this paper, we emphasize on classification of different types of risk factors and find a simple and effective way to calculate the risk exposure.. The study uses rough set method to classify and judge the safety attributes related to investment policy. The method which based on intelligent knowledge accusation provides an innovative way for risk analysis. From this approach, we are able to calculate the significance of each factor and relative risk exposure based on the original data without assigning the weight subjectively.
基金National Science Council(102-2313-b-275-001),which sponsored this work
文摘The governing factors that influence landslide occurrences are complicated by the different soil conditions at various sites.To resolve the problem,this study focused on spatial information technology to collect data and information on geology.GIS,remote sensing and digital elevation model(DEM) were used in combination to extract the attribute values of the surface material in the vast study area of SheiPa National Park,Taiwan.The factors influencing landslides were collected and quantification values computed.The major soil component of loam and gravel in the Shei-Pa area resulted in different landslide problems.The major factors were successfully extracted from the influencing factors.Finally,the discrete rough set(DRS) classifier was used as a tool to find the threshold of each attribute contributing to landslide occurrence,based upon the knowledge database.This rule-based knowledge database provides an effective and urgent system to manage landslides.NDVI(Normalized Difference Vegetation Index),VI(Vegetation Index),elevation,and distance from the road are the four major influencing factors for landslide occurrence.The landslide hazard potential diagrams(landslide susceptibility maps) were drawn and a rational accuracy rate of landslide was calculated.This study thus offers a systematic solution to the investigation of landslide disasters.
基金the National Natural Science Foundation of China(70572070)the Liaoning Province Talents Fund Projects(2005219005)the Technology Key Project of Liaoning Province(2006220019)
文摘The technique of data mining was provided to predict gas disaster in view of the characteristics of coal mine gas disaster and feature knowledge based on gas disaster. The rough set theory was used to establish data mining model of gas disaster prediction, and rough set attributes relations was discussed in prediction model of gas disaster to supplement the shortages of rough intensive reduction method by using information en- tropy criteria.The effectiveness and practicality of data mining technology in the prediction of gas disaster is confirmed through practical application.
基金supported by the UGC, SERO, Hyderabad under FDP during XI plan period, and the UGC, New Delhi for financial assistance under major research project Grant No. F-34-105/2008
文摘Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone,requiring no additional information. This paper describes the fundamental ideas behind RST-based approaches,reviews related FS methods built on these ideas,and analyses more frequently used RST-based traditional FS algorithms such as Quickreduct algorithm,entropy based reduct algorithm,and relative reduct algorithm. It is found that some of the drawbacks in the existing algorithms and our proposed improved algorithms can overcome these drawbacks. The experimental analyses have been carried out in order to achieve the efficiency of the proposed algorithms.
基金the Shanghai Post-Phosphor Plan ( No.0 1QMH14 11)
文摘Springback of sheet metal induced by elastic recovery is one of major defects in sheet metal forming processed. Springback is influenced by many factors including properties of the sheet material and processing conditions. In this paper, a springback simulation was conducted and comparisons between the results based on different processing variables were illustrated. The discovery of knowledge of the effects of geometry and process parameters on springback from FEM results becomes increasingly important, as the number of numerical simulation has grown exponentially. Data mining is an effective tool to realize knowledge discovery in simulation results. A data-mining algorithm, rough sets theory (RST), was applied to analyze the effects of process parameters on springback in U-bending.
基金supported by the UGC, SERO, Hyderabad under FDP during XI plan periodthe UGC, New Delhi for financial assistance under major research project Grant No. F-34-105/2008
文摘Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. The conventional supervised FS methods evaluate various feature subsets using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. In this paper, we propose a new unsupervised quick reduct (QR) algorithm using rough set theory. The quality of the reduced data is measured by the classification performance and it is evaluated using WEKA classifier tool. The method is compared with existing supervised methods and the result demonstrates the efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (70571032)
文摘An improvement of tolerance relation is proposed in regard to rough set model based on connection degree by which reflexivity of relation can be assured without loss of information. Then, a method to determine optimal identity degree based on relative positive region is proposed so that the identity degree can be computed in an objective method without any preliminary or additional information about data, which is consistent with the notion of objectivity in rough set theory and data mining theory. Subsequently, an algorithm is proposed, and in two examples, the global optimum identity degree is found out. Finally, in regard to optimum connection degree, the method of rules extraction for connection degree rough set model based on generalization function is presented by which the rules extracted from a decision table are enumerated.
基金ProjectsupportedbyResearchGrantofHongkongPolytechricUniversity (No .1 .34 .37.970 9) andNationalNatureScienceFoundationofChi
文摘Land resources are facing crises of being misused,especially for an intersection area between town and country,and land control has to be enforced.This paper presents a development of data mining method for land control.A vector_match method for the prerequisite of data mining i.e., data cleaning is proposed,which deals with both character and numeric data via vectorizing character_string and matching number.A minimal decision algorithm of rough set is used to discover the knowledge hidden in the data warehouse.In order to monitor land use dynamically and accurately,it is suggested to set up a real_time land control system based on GPS,digital photogrammetry and online data mining.Finally,the means is applied in the intersection area between town and country of Wuhan city,and a set of knowledge about land control is discovered.