In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigate...In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
Fast data synchronization in wireless ad hoc networks is a challenging and critical problem.It is fundamental for efficient information fusion,control and decision in distributed systems.Previously,distributed data sy...Fast data synchronization in wireless ad hoc networks is a challenging and critical problem.It is fundamental for efficient information fusion,control and decision in distributed systems.Previously,distributed data synchronization was mainly studied in the latency-tolerant distributed databases,or assuming the general model of wireless ad hoc networks.In this paper,we propose a pair of linear network coding(NC)and all-to-all broadcast based fast data synchronization algorithms for wireless ad hoc networks whose topology is under operator’s control.We consider both data block selection and transmitting node selection for exploiting the benefits of NC.Instead of using the store-and-forward protocol as in the conventional uncoded approach,a compute-and-forward protocol is used in our scheme,which improves the transmission efficiency.The performance of the proposed algorithms is studied under different values of network size,network connection degree,and per-hop packet error rate.Simulation results demonstrate that our algorithms significantly reduce the times slots used for data synchronization compared with the baseline that does not use NC.展开更多
This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopte...This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality(LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.展开更多
We deal with the problem of pinning sampled-data synchronization for a complex network with probabilistic time-varying coupling delay. The sampling period considered here is assumed to be less than a given bound. With...We deal with the problem of pinning sampled-data synchronization for a complex network with probabilistic time-varying coupling delay. The sampling period considered here is assumed to be less than a given bound. Without using the Kronecker product, a new synchronization error system is constructed by using the property of the random variable and input delay approach. Based on the Lyapunov theory, a delay-dependent pinning sampled-data synchronization criterion is derived in terms of linear matrix inequalities (LMIs) that can be solved effectively by using MATLAB LMI toolbox. Numerical examples are provided to demonstrate the effectiveness of the proposed scheme.展开更多
Based on a generalized chaos synchronization system and a discrete Sinai map, a non-symmetric true color (RGB) digital image secure communication scheme is proposed. The scheme first changes an ordinary RGB digital ...Based on a generalized chaos synchronization system and a discrete Sinai map, a non-symmetric true color (RGB) digital image secure communication scheme is proposed. The scheme first changes an ordinary RGB digital image with 8 bits into unrecognizable disorder codes and then transforms the disorder codes into an RGB digital image with 16 bits for transmitting. A receiver uses a non-symmetric key to verify the authentication of the received data origin, and decrypts the ciphertext. The scheme can encrypt and decz:Fpt most formatted digital RGB images recognized by computers, and recover the plaintext almost without any errors. The scheme is suitable to be applied in network image communications. The analysis of the key space, sensitivity of key parameters, and correlation of encrypted images imply that this scheme has sound security.展开更多
In order to reduce amount of data storage and improve processing capacity of the system, this paper proposes a new classification method of data source by combining phase synchronization model in network clusteri...In order to reduce amount of data storage and improve processing capacity of the system, this paper proposes a new classification method of data source by combining phase synchronization model in network clustering with cloud model. Firstly, taking data source as a complex network, after the topography of network is obtained, the cloud model of each node data is determined by fuzzy analytic hierarchy process (AHP). Secondly, by calculating expectation, entropy and hyper entropy of the cloud model, comprehensive coupling strength is got and then it is regarded as the edge weight of topography. Finally, distribution curve is obtained by iterating the phase of each node by means of phase synchronization model. Thus classification of data source is completed. This method can not only provide convenience for storage, cleaning and compression of data, but also improve the efficiency of data analysis.展开更多
针对轮询和gossip 2种数据同步存在的应用局限性问题,结合快速UDP网络连接(quick UDP internet connections,QUIC)传输协议和gossip算法的特性,提出一种基于QUIC的无线自组网数据同步算法。介绍QUIC-gossip算法的核心原理、数据传输策...针对轮询和gossip 2种数据同步存在的应用局限性问题,结合快速UDP网络连接(quick UDP internet connections,QUIC)传输协议和gossip算法的特性,提出一种基于QUIC的无线自组网数据同步算法。介绍QUIC-gossip算法的核心原理、数据传输策略和动态拓扑适应性,并通过实验和性能评估进行验证。结果表明:该算法能够降低同步数据的延迟,具有鲁棒性较强、数据传输较快和适应性较强的特点,为解决无线自组网中的数据同步问题提供了一种新方法。展开更多
基金Project supported by the NBHM Research Project (Grant Nos.2/48(7)/2012/NBHM(R.P.)/R and D II/12669)
文摘In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金This work is financially supported by Beijing Municipal Natural Science Foundation(No.L202012)the Open Research Project of the State Key Laboratory of Media Convergence and Communication,Communication University of China(No.SKLMCC2020KF008)the Fundamental Research Funds for the Central Universities(No.2020RC05).
文摘Fast data synchronization in wireless ad hoc networks is a challenging and critical problem.It is fundamental for efficient information fusion,control and decision in distributed systems.Previously,distributed data synchronization was mainly studied in the latency-tolerant distributed databases,or assuming the general model of wireless ad hoc networks.In this paper,we propose a pair of linear network coding(NC)and all-to-all broadcast based fast data synchronization algorithms for wireless ad hoc networks whose topology is under operator’s control.We consider both data block selection and transmitting node selection for exploiting the benefits of NC.Instead of using the store-and-forward protocol as in the conventional uncoded approach,a compute-and-forward protocol is used in our scheme,which improves the transmission efficiency.The performance of the proposed algorithms is studied under different values of network size,network connection degree,and per-hop packet error rate.Simulation results demonstrate that our algorithms significantly reduce the times slots used for data synchronization compared with the baseline that does not use NC.
基金Project supported by the National Natural Science Foundation of China(Grant No.61304064)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant Nos.15B067 and 16C0475)a Discovering Grant from Australian Research Council
文摘This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality(LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203049 and 61303020)the Natural Science Foundation of Shanxi Province of China(Grant No.2013021018-3)the Doctoral Startup Foundation of Taiyuan University of Science and Technology,China(Grant No.20112010)
文摘We deal with the problem of pinning sampled-data synchronization for a complex network with probabilistic time-varying coupling delay. The sampling period considered here is assumed to be less than a given bound. Without using the Kronecker product, a new synchronization error system is constructed by using the property of the random variable and input delay approach. Based on the Lyapunov theory, a delay-dependent pinning sampled-data synchronization criterion is derived in terms of linear matrix inequalities (LMIs) that can be solved effectively by using MATLAB LMI toolbox. Numerical examples are provided to demonstrate the effectiveness of the proposed scheme.
基金the National Natural Science Foundation of China under,the Foundation for University Key Teachers,高等学校博士学科点专项科研项目,教育部科学技术研究项目
文摘Based on a generalized chaos synchronization system and a discrete Sinai map, a non-symmetric true color (RGB) digital image secure communication scheme is proposed. The scheme first changes an ordinary RGB digital image with 8 bits into unrecognizable disorder codes and then transforms the disorder codes into an RGB digital image with 16 bits for transmitting. A receiver uses a non-symmetric key to verify the authentication of the received data origin, and decrypts the ciphertext. The scheme can encrypt and decz:Fpt most formatted digital RGB images recognized by computers, and recover the plaintext almost without any errors. The scheme is suitable to be applied in network image communications. The analysis of the key space, sensitivity of key parameters, and correlation of encrypted images imply that this scheme has sound security.
基金National Natural Science Foundation of China(No.61171057,No.61503345)Science Foundation for North University of China(No.110246)+1 种基金Specialized Research Fund for Doctoral Program of Higher Education of China(No.20121420110004)International Office of Shanxi Province Education Department of China,and Basic Research Project in Shanxi Province(Young Foundation)
文摘In order to reduce amount of data storage and improve processing capacity of the system, this paper proposes a new classification method of data source by combining phase synchronization model in network clustering with cloud model. Firstly, taking data source as a complex network, after the topography of network is obtained, the cloud model of each node data is determined by fuzzy analytic hierarchy process (AHP). Secondly, by calculating expectation, entropy and hyper entropy of the cloud model, comprehensive coupling strength is got and then it is regarded as the edge weight of topography. Finally, distribution curve is obtained by iterating the phase of each node by means of phase synchronization model. Thus classification of data source is completed. This method can not only provide convenience for storage, cleaning and compression of data, but also improve the efficiency of data analysis.
文摘针对轮询和gossip 2种数据同步存在的应用局限性问题,结合快速UDP网络连接(quick UDP internet connections,QUIC)传输协议和gossip算法的特性,提出一种基于QUIC的无线自组网数据同步算法。介绍QUIC-gossip算法的核心原理、数据传输策略和动态拓扑适应性,并通过实验和性能评估进行验证。结果表明:该算法能够降低同步数据的延迟,具有鲁棒性较强、数据传输较快和适应性较强的特点,为解决无线自组网中的数据同步问题提供了一种新方法。