期刊文献+
共找到752,223篇文章
< 1 2 250 >
每页显示 20 50 100
Data-driven methods for predicting the representative temperature of bridge cable based on limited measured data
1
作者 WANG Fen DAI Gong-lian +2 位作者 HE Chang-lin GE Hao RAO Hui-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3168-3186,共19页
Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai... Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges. 展开更多
关键词 cable-stayed bridges representative temperature gradient boosted regression trees(GBRT)method field test limited measured data
下载PDF
Data-driven Methods to Predict the Burst Strength of Corroded Line Pipelines Subjected to Internal Pressure 被引量:1
2
作者 Jie Cai Xiaoli Jiang +2 位作者 Yazhou Yang Gabriel Lodewijks Minchang Wang 《Journal of Marine Science and Application》 CSCD 2022年第2期115-132,共18页
A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength p... A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength prediction of such pipes with corrosion.However,it is time-consuming for finite-element method and there is a limited application range by using empirical formulas.In order to improve the prediction of strength,this paper investigates the burst pressure of line pipelines with a single corrosion defect subjected to internal pressure based on data-driven methods.Three supervised ML(machine learning)algorithms,including the ANN(artificial neural network),the SVM(support vector machine)and the LR(linear regression),are deployed to train models based on experimental data.Data analysis is first conducted to determine proper pipe features for training.Hyperparameter tuning to control the learning process is then performed to fit the best strength models for corroded pipelines.Among all the proposed data-driven models,the ANN model with three neural layers has the highest training accuracy,but also presents the largest variance.The SVM model provides both high training accuracy and high validation accuracy.The LR model has the best performance in terms of generalization ability.These models can be served as surrogate models by transfer learning with new coming data in future research,facilitating a sustainable and intelligent decision-making of corroded pipelines. 展开更多
关键词 Pipelines CORROSION Burst strength Internal pressure data-driven method Machine learning
下载PDF
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations: A Review
3
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 Structural health monitoring data information modal parameters damage identification AI method
下载PDF
Data-driven prediction of dimensionless quantities for semi-infinite target penetration by integrating machine-learning and feature selection methods
4
作者 Qingqing Chen Xinyu Zhang +2 位作者 Zhiyong Wang Jie Zhang Zhihua Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期105-124,共20页
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ... This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated. 展开更多
关键词 data-driven dimensional analysis PENETRATION Semi-infinite metal target Dimensionless numbers Feature selection
下载PDF
A comprehensive review on the development of data-driven methods for wind power prediction and AGC performance evaluation in wind–thermal bundled power systems
5
作者 Shuai Wang Bin Li +4 位作者 Guanzheng Li Botong Li Hongbo Li Kui Jiao Chengshan Wang 《Energy and AI》 EI 2024年第2期450-463,共14页
The wind–thermal bundled power system achieves energy complementarity and optimized scheduling, which is an important way to build a new type of energy system. For the safe and stable operation of the wind–thermal b... The wind–thermal bundled power system achieves energy complementarity and optimized scheduling, which is an important way to build a new type of energy system. For the safe and stable operation of the wind–thermal bundled power system, accurate data-driven analysis is necessary to maintain real-time balance between electricity supply and demand. By summarizing the development and characteristics of wind–thermal bundled power system in China and different countries, current research in this field can be clearly defined in two aspects: short-term wind power prediction for wind farms and performance evaluation of automatic generation control (AGC) for thermal power generation units. For short-term wind power prediction, it is recommended to focus on historical data preprocessing and artificial intelligence methods. The technical characteristics of different data-driven wind power prediction methods have been compared in detail. For performance evaluation of AGC units, a comprehensive analysis was conducted on current evaluation methods, including the “permitted-band” and “regulation mileage” methods, as well as the issue of evaluation failure in traditional evaluation methods in practical engineering. Finally, the relative optimal dynamic performance of AGC units was discussed and the future trend of data-driven research in wind–thermal bundled power system was summarized. 展开更多
关键词 Wind power prediction Automatic generation control Performance evaluation data-driven Feature analysis
原文传递
Summary study of data-driven photometric stereo methods
6
作者 Qian ZHENG Boxin SHI Gang PAN 《Virtual Reality & Intelligent Hardware》 2020年第3期213-221,共9页
Background A photometric stereo method aims to recover the surface normal of a 3D object observed under varying light directions.It is an ill-defined problem because the general reflectance properties of the surface a... Background A photometric stereo method aims to recover the surface normal of a 3D object observed under varying light directions.It is an ill-defined problem because the general reflectance properties of the surface are unknown.Methods This paper reviews existing data-driven methods,with a focus on their technical insights into the photometric stereo problem.We divide these methods into two categories,per-pixel and all-pixel,according to how they process an image.We discuss the differences and relationships between these methods from the perspective of inputs,networks,and data,which are key factors in designing a deep learning approach.Results We demonstrate the performance of the models using a popular benchmark dataset.Conclusions Data-driven photometric stereo methods have shown that they possess a superior performance advantage over traditional methods.However,these methods suffer from various limitations,such as limited generalization capability.Finally,this study suggests directions for future research. 展开更多
关键词 Photometric stereo data-driven methods Non-Lambertian reflectance
下载PDF
A Review on Sources,Extractions and Analysis Methods of a Sustainable Biomaterial:Tannins 被引量:2
7
作者 Antonio Pizzi Marie-Pierre Laborie Zeki Candan 《Journal of Renewable Materials》 EI CAS 2024年第3期397-425,共29页
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ... Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses. 展开更多
关键词 TANNINS FLAVONOIDS SOURCES extraction methods analysis methods
下载PDF
A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:antioxidant and bile acid-binding capacity 被引量:5
8
作者 Qiaoyun Li Zuman Dou +5 位作者 Qingfei Duan Chun Chen Ruihai Liu Yueming Jiang Bao Yang Xiong Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期494-505,共12页
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic... In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods. 展开更多
关键词 Sea buckthorn Extraction method STRUCTURE Rheological properties Antioxidant activity Bile acid binding capacity
下载PDF
Deciphering gastric inflammation-induced tumorigenesis through multi-omics data and AI methods 被引量:1
9
作者 Qian Zhang Mingran Yang +3 位作者 Peng Zhang Bowen Wu Xiaosen Wei Shao Li 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第4期312-330,共19页
Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic re... Gastric cancer(GC), the fifth most common cancer globally, remains the leading cause of cancer deaths worldwide. Inflammation-induced tumorigenesis is the predominant process in GC development;therefore, systematic research in this area should improve understanding of the biological mechanisms that initiate GC development and promote cancer hallmarks. Here, we summarize biological knowledge regarding gastric inflammation-induced tumorigenesis, and characterize the multi-omics data and systems biology methods for investigating GC development. Of note, we highlight pioneering studies in multi-omics data and state-of-the-art network-based algorithms used for dissecting the features of gastric inflammation-induced tumorigenesis, and we propose translational applications in early GC warning biomarkers and precise treatment strategies. This review offers integrative insights for GC research, with the goal of paving the way to novel paradigms for GC precision oncology and prevention. 展开更多
关键词 Gastric cancer inflammation-induced tumorigenesis multi-omics artificial intelligence network-based methods
下载PDF
Degradation prediction of proton exchange membrane fuel cell stack using semi-empirical and data-driven methods 被引量:3
10
作者 Yupeng Wang Kangcheng Wu +7 位作者 Honghui Zhao Jincheng Li Xia Sheng Yan Yin Qing Du Bingfeng Zu Linghai Han Kui Jiao 《Energy and AI》 2023年第1期1-11,共11页
Degradation prediction of proton exchange membrane fuel cell(PEMFC)stack is of great significance for improving the rest useful life.In this study,a PEMFC system including a stack of 300 cells and subsystems has been ... Degradation prediction of proton exchange membrane fuel cell(PEMFC)stack is of great significance for improving the rest useful life.In this study,a PEMFC system including a stack of 300 cells and subsystems has been tested under semi-steady operations for about 931 h.Then,two different models are respectively established based on semi-empirical method and data-driven method to investigate the degradation of stack performance.It is found that the root mean square error(RMSE)of the semi-empirical model in predicting the stack voltage is around 1.0 V,while the predicted voltage has no local dynamic characteristics,which can only reflect the overall degradation trend of stack performance.The RMSE of short-term voltage degradation predicted by the DDM can be less than 1.0 V,and the predicted voltage has accurate local variation characteristics.However,for the long-term prediction,the error will accumulate with the iterations and the deviation of the predicted voltage begins to fluctuate gradually,and the RMSE for the long-term predictions can increase to 1.63 V.Based on the above characteristics of the two models,a hybrid prediction model is further developed.The prediction results of the semi-empirical model are used to modify the input of the data-driven model,which can effectively improve the oscillation of prediction results of the data-driven model during the long-term degradation.It is found that the hybrid model has good error distribution(RSEM=0.8144 V,R2=0.8258)and local performance dynamic characteristics which can be used to predict the process of long-term stack performance degradation. 展开更多
关键词 Proton exchange membrane fuel cell system data-driven method Semi-empirical equation Degradation experiments
原文传递
An efficient data-driven global sensitivity analysis method of shale gas production through convolutional neural network
11
作者 Liang Xue Shuai Xu +4 位作者 Jie Nie Ji Qin Jiang-Xia Han Yue-Tian Liu Qin-Zhuo Liao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2475-2484,共10页
The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively... The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages. 展开更多
关键词 Shale gas Global sensitivity Convolutional neural network data-driven
下载PDF
Hybrid Strategy of Partitioned and Monolithic Methods for Solving Strongly Coupled Analysis of Inverse and Direct Piezoelectric and Circuit Coupling
12
作者 Daisuke Ishihara Syunnosuke Nozaki +1 位作者 Tomoya Niho Naoto Takayama 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1371-1386,共16页
The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct n... The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions. 展开更多
关键词 Structure-piezoelectric-circuit interaction energy harvesting partitioned method monolithic method hybrid method
下载PDF
Stability Analysis and Performance Evaluation of Additive Mixed-Precision Runge-Kutta Methods
13
作者 Ben Burnett Sigal Gottlieb Zachary J.Grant 《Communications on Applied Mathematics and Computation》 EI 2024年第1期705-738,共34页
Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implic... Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implicit computations and full precision for the explicit computations.In this work,we analyze the stability properties of these methods and their sensitivity to the low-precision rounding errors,and demonstrate their performance in terms of accuracy and efficiency.We develop codes in FORTRAN and Julia to solve nonlinear systems of ODEs and PDEs using the mixed-precision additive Runge-Kutta(MP-ARK)methods.The convergence,accuracy,and runtime of these methods are explored.We show that for a given level of accuracy,suitably chosen MP-ARK methods may provide significant reductions in runtime. 展开更多
关键词 Mixed precision Runge-Kutta methods Additive methods ACCURACY
下载PDF
High-Order Decoupled and Bound Preserving Local Discontinuous Galerkin Methods for a Class of Chemotaxis Models
14
作者 Wei Zheng Yan Xu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期372-398,共27页
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe... In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving. 展开更多
关键词 Chemotaxis models Local discontinuous Galerkin(LDG)scheme Convex splitting method Variant energy quadratization method Scalar auxiliary variable method Spectral deferred correction method
下载PDF
Review of Collocation Methods and Applications in Solving Science and Engineering Problems
15
作者 Weiwu Jiang Xiaowei Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期41-76,共36页
The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their appl... The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their applications,focused on elasticity,heat conduction,electromagnetic field analysis,and fluid dynamics.The merits of the collocation method can be attributed to the need for element mesh,simple implementation,high computational efficiency,and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method.Beginning with the fundamental principles of the collocation method,the discretization process in the continuous domain is elucidated,and how the collocation method approximation solutions for solving differential equations are explained.Delving into the historical development of the collocation methods,their earliest applications and key milestones are traced,thereby demonstrating their evolution within the realm of numerical computation.The mathematical foundations of collocation methods,encompassing the selection of interpolation functions,definition of weighting functions,and derivation of integration rules,are examined in detail,emphasizing their significance in comprehending the method’s effectiveness and stability.At last,the practical application of the collocation methods in engineering contexts is emphasized,including heat conduction simulations,electromagnetic coupled field analysis,and fluid dynamics simulations.These specific case studies can underscore collocation method’s broad applicability and effectiveness in addressing complex engineering challenges.In conclusion,this paper puts forward the future development trend of the collocation method through rigorous analysis and discussion,thereby facilitating further advancements in research and practical applications within these fields. 展开更多
关键词 Collocation method meshless method discrete schemes for functions numerical calculation
下载PDF
Numerical Methods for a Class of Quadratic Matrix Equations
16
作者 GUAN Jinrui WANG Zhixin SHAO Rongxia 《应用数学》 北大核心 2024年第4期962-970,共9页
Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of... Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper. 展开更多
关键词 Quadratic matrix equation M-MATRIX Minimal nonnegative solution Newton method Bernoulli method
下载PDF
Data-Driven Adaptive Predictive Control Method With Autotuned Weighting Factor for Nonlinear Systems Using Triangular Dynamic Linearization
17
作者 Zhong-Hua Pang Yumo Zhang +2 位作者 Xueyuan Sun Shengnan Gao Guo-Ping Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1880-1882,共3页
Dear Editor,In this letter,a novel data-driven adaptive predictive control method is proposed using the triangular dynamic linearization technique.The proposed method only contains one time-varying parameter with expl... Dear Editor,In this letter,a novel data-driven adaptive predictive control method is proposed using the triangular dynamic linearization technique.The proposed method only contains one time-varying parameter with explicit physical meaning,which can prevent severe deviation in parameter estimation.Specifically,a triangular dynamic linearization(TDL)data model is employed to predict future system outputs,and then to correct inaccurate predictive outputs,a feedback regulator is designed.An autotuned weighing factor is introduced to alleviate the computational burden in practical applications and further improve output tracking performance.Closed-loop stability conditions are derived by rigorous analysis.Simulation results are provided to demonstrate the efficacy of the proposed method. 展开更多
关键词 ESTIMATION TECHNIQUE method
下载PDF
An Evidence-Based CoCoSo Framework with Double Hierarchy Linguistic Data for Viable Selection of Hydrogen Storage Methods
18
作者 Raghunathan Krishankumar Dhruva Sundararajan +1 位作者 K.S.Ravichandran Edmundas Kazimieras Zavadskas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2845-2872,共28页
Hydrogen is the new age alternative energy source to combat energy demand and climate change.Storage of hydrogen is vital for a nation’s growth.Works of literature provide different methods for storing the produced h... Hydrogen is the new age alternative energy source to combat energy demand and climate change.Storage of hydrogen is vital for a nation’s growth.Works of literature provide different methods for storing the produced hydrogen,and the rational selection of a viable method is crucial for promoting sustainability and green practices.Typically,hydrogen storage is associated with diverse sustainable and circular economy(SCE)criteria.As a result,the authors consider the situation a multi-criteria decision-making(MCDM)problem.Studies infer that previous models for hydrogen storage method(HSM)selection(i)do not consider preferences in the natural language form;(ii)weights of experts are not methodically determined;(iii)hesitation of experts during criteria weight assessment is not effectively explored;and(iv)three-stage solution of a suitable selection of HSM is unexplored.Driven by these gaps,in this paper,authors put forward a new integrated framework,which considers double hierarchy linguistic information for rating,criteria importance through inter-criteria correlation(CRITIC)for expert weight calculation,evidence-based Bayesian method for criteria weight estimation,and combined compromise solution(CoCoSo)for ranking HSMs.The applicability of the developed framework is testified by using a case example of HSM selection in India.Sensitivity and comparative analysis reveal the merits and limitations of the developed framework. 展开更多
关键词 Hydrogen storage methods double hierarchy hesitant fuzzy linguistic term set evidence theory CoCoSo method sustainability circular economy
下载PDF
Holistic and localized preparation methods for triboelectric sensors:principles,applications and perspectives
19
作者 Zhenqiu Gao Shaokuan Wu +6 位作者 Yihan Wei Mervat Ibrahim Hani Nasser Abdelhamid Guyu Jiang Jun Cao Xuhui Sun Zhen Wen 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期20-36,共17页
With the arrival of intelligent terminals,triboelectric nanogenerators,as a new kind of energy converter,are considered one of the most important technologies for the next generation of intelligent electronics.As a se... With the arrival of intelligent terminals,triboelectric nanogenerators,as a new kind of energy converter,are considered one of the most important technologies for the next generation of intelligent electronics.As a self-powered sensor,it can greatly reduce the power consumption of the entire sensing system by transforming external mechanical energy to electricity.However,the fabrication method of triboelectric sensors largely determines their functionality and performance.This review provides an overview of various methods used to fabricate triboelectric sensors,with a focus on the processes of micro-electro-mechanical systems technology,three-dimensional printing,textile methods,template-assisted methods,and material synthesis methods for manufacturing.The working mechanisms and suitable application scenarios of various methods are outlined.Subsequently,the advantages and disadvantages of various methods are summarized,and reference schemes for the subsequent application of these methods are included.Finally,the opportunities and challenges faced by different methods are discussed,as well as their potential for application in various intelligent systems in the Internet of Things. 展开更多
关键词 triboelectric sensor fabrication methods intelligent system holistic-to-localized
下载PDF
Bound-Preserving Discontinuous Galerkin Methods with Modified Patankar Time Integrations for Chemical Reacting Flows
20
作者 Fangyao Zhu Juntao Huang Yang Yang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期190-217,共28页
In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal e... In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes. 展开更多
关键词 Compressible Euler equations Chemical reacting flows Bound-preserving Discontinuous Galerkin(DG)method Modified Patankar method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部