The main challenge in AI governance today is striking a balance between controlling AI dangers and fostering AI innovation.Regulators in a number of nations have progressively extended the regulatory sandbox,which was...The main challenge in AI governance today is striking a balance between controlling AI dangers and fostering AI innovation.Regulators in a number of nations have progressively extended the regulatory sandbox,which was first implemented in the banking sector,to AI governance in an effort to reduce the conflict between regulation and innovation.The AI regulatory sandbox is a new and feasible route for AI governance in China that not only helps to manage the risks of technology application but also prevents inhibiting AI innovation.It keeps inventors'trial-and-error tolerance space inside the regulatory purview while offering a controlled setting for the development and testing of novel AI that hasn't yet been put on the market.By providing full-cycle governance of AI with the principles of agility and inclusive prudence,the regulatory sandbox offers an alternative to the conventional top-down hard regulation,expost regulation,and tight regulation.However,the current system also has inherent limitations and practical obstacles that need to be overcome by a more rational and effective approach.To achieve its positive impact on AI governance,the AI regulatory sandbox system should build and improve the access and exit mechanism,the coordination mechanism between the sandbox and personal information protection,and the mechanisms of exemption,disclosure,and communication.展开更多
To cope with the challenges of CoViD-19,europe has adopted relevant measures of a data-based approach to governance,on which scholars have huge differences,and the related researches are conducive to further discussio...To cope with the challenges of CoViD-19,europe has adopted relevant measures of a data-based approach to governance,on which scholars have huge differences,and the related researches are conducive to further discussion on the differences.By sorting out the challenges posed by the pandemic to public security and data protection in europe,we can summarize the“european Solution”of the data-based approach to governance,including legislation,instruments,supervision,international cooperation,and continuity.The“Solution”has curbed the spread of the pandemic to a certain extent.However,due to the influence of the traditional values of the EU,the“Solution”is too idealistic in the balance between public security and data protection,which intensifies the dilemma and causes many problems,such as ambiguous legislation,inadequate effectiveness and security of instruments,an arduous endeavor in inter national cooperation,and imperfect regulations on digital green certificates.Therefore,in a major public health crisis,there is still a long way to go in exploring a balance between public security and data protection.展开更多
Artificial intelligence (AI) is rapidly being applied to a wide range of fields,including medicine,and has been considered as an approach that may augment or substitute human professionals in primary healthcare.Howeve...Artificial intelligence (AI) is rapidly being applied to a wide range of fields,including medicine,and has been considered as an approach that may augment or substitute human professionals in primary healthcare.However,AI also raises several challenges and ethical concerns.In this article,the author investigates and discusses three aspects of AI in medicine and healthcare:the application and promises of AI,special ethical concerns pertaining to AI in some frontier fields,and suggestive ethical governance systems.Despite great potentials of frontier AI research and development in the field of medical care,the ethical challenges induced by its applications has put forward new requirements for governance.To ensure “trustworthy” AI applications in healthcare and medicine,the creation of an ethical global governance framework and system as well as special guidelines for frontier AI applications in medicine are suggested.The most important aspects include the roles of governments in ethical auditing and the responsibilities of stakeholders in the ethical governance system.展开更多
In the context of the digital economy,the volume of data is growing exponentially,the types of data are becoming more diverse,and its value is increasing,often providing critical support for decision-making by enterpr...In the context of the digital economy,the volume of data is growing exponentially,the types of data are becoming more diverse,and its value is increasing,often providing critical support for decision-making by enterprises and government institutions.Effective data governance is a crucial tool for maximizing data value and mitigating data risks.This article examines the application of data governance models in the digital economy,aiming to offer technical insights and guidance for data-driven enterprises and governments in China.By elevating their data governance standards in the new era,this approach will comprehensively enhance their ability to harness digital value and ensure security in the digital economy,ultimately driving the continued growth of both the digital economy and society.展开更多
The paper is devoted to the corporate governance intelligence system investigation as the part of the complex stakeholder-related approach to the corporate strategic intelligence system (CSIS). The special attention...The paper is devoted to the corporate governance intelligence system investigation as the part of the complex stakeholder-related approach to the corporate strategic intelligence system (CSIS). The special attention is given to the minority shareholders activism in the system of corporate governance. Some existing methods of abusing minority shareholders rights, made by joint-stock companies executives, are generalized. The recommendations for minority shareholder's rights protection are given. The necessity for the implementation of the stakeholders-oriented approach for the CSIS creation on the base of companies' security principles is substantiated.展开更多
In the age of the internet,social media are connecting us all at the tip of our fingers.People are linkedthrough different social media.The social network,Twitter,allows people to tweet their thoughts on any particula...In the age of the internet,social media are connecting us all at the tip of our fingers.People are linkedthrough different social media.The social network,Twitter,allows people to tweet their thoughts on any particular event or a specific political body which provides us with a diverse range of political insights.This paper serves the purpose of text processing of a multilingual dataset including Urdu,English,and Roman Urdu.Explore machine learning solutions for sentiment analysis and train models,collect the data on government from Twitter,apply sentiment analysis,and provide a python library that classifies text sentiment.Training data contained tweets in three languages:English:200k,Urdu:200k and Roman Urdu:11k.Five different classification models are applied to determine sentiments,and eventually,the use of ensemble technique to move forward with the acquired results is explored.The Logistic Regression model performed best with an accuracy of 75%,followed by the Linear Support Vector classifier and Stochastic Gradient Descent model,both having 74%accuracy.Lastly,Multinomial Naïve Bayes and Complement Naïve Bayes models both achieved 73%accuracy.展开更多
As AI technology continues to evolve,it plays an increasingly significant role in everyday life and social governance.However,the frequent occurrence of issues such as algorithmic bias,privacy breaches,and data leaks ...As AI technology continues to evolve,it plays an increasingly significant role in everyday life and social governance.However,the frequent occurrence of issues such as algorithmic bias,privacy breaches,and data leaks has led to a crisis of trust in AI among the public,presenting numerous challenges to social governance.Establishing technical trust in Al,reducing uncertainties in AI development,and enhancing its effectiveness in social governance have become a consensus among policymakers and researchers.By comparing different types of AI,the paper proposes and conceptualizes the idea of trustworthy Al,then discusses its characteristics and its value and impact pathways in social governance.The analysis addresses how mismatches in technological trust can affect social stability and the advancement of AI strategies.The paper highlights the potential of trustworthy AI to improve the efficiency of social governance and solve complex social problems.展开更多
With the ever increasing complexity of industrial systems,model-based control has encountered difficulties and is facing problems,while the interest in data-based control has been booming.This paper gives an overview ...With the ever increasing complexity of industrial systems,model-based control has encountered difficulties and is facing problems,while the interest in data-based control has been booming.This paper gives an overview of data-based control,which divides it into two subfields,intelligent modeling and direct controller design.In the two subfields,some important methods concerning data-based control are intensively investigated.Within the framework of data-based modeling,main modeling technologies and control strategies are discussed,and then fundamental concepts and various algorithms are presented for the design of a data-based controller.Finally,some remaining challenges are suggested.展开更多
文摘The main challenge in AI governance today is striking a balance between controlling AI dangers and fostering AI innovation.Regulators in a number of nations have progressively extended the regulatory sandbox,which was first implemented in the banking sector,to AI governance in an effort to reduce the conflict between regulation and innovation.The AI regulatory sandbox is a new and feasible route for AI governance in China that not only helps to manage the risks of technology application but also prevents inhibiting AI innovation.It keeps inventors'trial-and-error tolerance space inside the regulatory purview while offering a controlled setting for the development and testing of novel AI that hasn't yet been put on the market.By providing full-cycle governance of AI with the principles of agility and inclusive prudence,the regulatory sandbox offers an alternative to the conventional top-down hard regulation,expost regulation,and tight regulation.However,the current system also has inherent limitations and practical obstacles that need to be overcome by a more rational and effective approach.To achieve its positive impact on AI governance,the AI regulatory sandbox system should build and improve the access and exit mechanism,the coordination mechanism between the sandbox and personal information protection,and the mechanisms of exemption,disclosure,and communication.
基金the phased achievement of the major research project of the National Social Science Fund of China(Project Approval No.21VGQ010)supported by the 2021 Central University Basic Scientific Research Project of Lanzhou University(Project Approval No.21lzujbkyjd002).
文摘To cope with the challenges of CoViD-19,europe has adopted relevant measures of a data-based approach to governance,on which scholars have huge differences,and the related researches are conducive to further discussion on the differences.By sorting out the challenges posed by the pandemic to public security and data protection in europe,we can summarize the“european Solution”of the data-based approach to governance,including legislation,instruments,supervision,international cooperation,and continuity.The“Solution”has curbed the spread of the pandemic to a certain extent.However,due to the influence of the traditional values of the EU,the“Solution”is too idealistic in the balance between public security and data protection,which intensifies the dilemma and causes many problems,such as ambiguous legislation,inadequate effectiveness and security of instruments,an arduous endeavor in inter national cooperation,and imperfect regulations on digital green certificates.Therefore,in a major public health crisis,there is still a long way to go in exploring a balance between public security and data protection.
文摘Artificial intelligence (AI) is rapidly being applied to a wide range of fields,including medicine,and has been considered as an approach that may augment or substitute human professionals in primary healthcare.However,AI also raises several challenges and ethical concerns.In this article,the author investigates and discusses three aspects of AI in medicine and healthcare:the application and promises of AI,special ethical concerns pertaining to AI in some frontier fields,and suggestive ethical governance systems.Despite great potentials of frontier AI research and development in the field of medical care,the ethical challenges induced by its applications has put forward new requirements for governance.To ensure “trustworthy” AI applications in healthcare and medicine,the creation of an ethical global governance framework and system as well as special guidelines for frontier AI applications in medicine are suggested.The most important aspects include the roles of governments in ethical auditing and the responsibilities of stakeholders in the ethical governance system.
文摘In the context of the digital economy,the volume of data is growing exponentially,the types of data are becoming more diverse,and its value is increasing,often providing critical support for decision-making by enterprises and government institutions.Effective data governance is a crucial tool for maximizing data value and mitigating data risks.This article examines the application of data governance models in the digital economy,aiming to offer technical insights and guidance for data-driven enterprises and governments in China.By elevating their data governance standards in the new era,this approach will comprehensively enhance their ability to harness digital value and ensure security in the digital economy,ultimately driving the continued growth of both the digital economy and society.
文摘The paper is devoted to the corporate governance intelligence system investigation as the part of the complex stakeholder-related approach to the corporate strategic intelligence system (CSIS). The special attention is given to the minority shareholders activism in the system of corporate governance. Some existing methods of abusing minority shareholders rights, made by joint-stock companies executives, are generalized. The recommendations for minority shareholder's rights protection are given. The necessity for the implementation of the stakeholders-oriented approach for the CSIS creation on the base of companies' security principles is substantiated.
文摘In the age of the internet,social media are connecting us all at the tip of our fingers.People are linkedthrough different social media.The social network,Twitter,allows people to tweet their thoughts on any particular event or a specific political body which provides us with a diverse range of political insights.This paper serves the purpose of text processing of a multilingual dataset including Urdu,English,and Roman Urdu.Explore machine learning solutions for sentiment analysis and train models,collect the data on government from Twitter,apply sentiment analysis,and provide a python library that classifies text sentiment.Training data contained tweets in three languages:English:200k,Urdu:200k and Roman Urdu:11k.Five different classification models are applied to determine sentiments,and eventually,the use of ensemble technique to move forward with the acquired results is explored.The Logistic Regression model performed best with an accuracy of 75%,followed by the Linear Support Vector classifier and Stochastic Gradient Descent model,both having 74%accuracy.Lastly,Multinomial Naïve Bayes and Complement Naïve Bayes models both achieved 73%accuracy.
文摘As AI technology continues to evolve,it plays an increasingly significant role in everyday life and social governance.However,the frequent occurrence of issues such as algorithmic bias,privacy breaches,and data leaks has led to a crisis of trust in AI among the public,presenting numerous challenges to social governance.Establishing technical trust in Al,reducing uncertainties in AI development,and enhancing its effectiveness in social governance have become a consensus among policymakers and researchers.By comparing different types of AI,the paper proposes and conceptualizes the idea of trustworthy Al,then discusses its characteristics and its value and impact pathways in social governance.The analysis addresses how mismatches in technological trust can affect social stability and the advancement of AI strategies.The paper highlights the potential of trustworthy AI to improve the efficiency of social governance and solve complex social problems.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.60874013,60953001 and 61034002).
文摘With the ever increasing complexity of industrial systems,model-based control has encountered difficulties and is facing problems,while the interest in data-based control has been booming.This paper gives an overview of data-based control,which divides it into two subfields,intelligent modeling and direct controller design.In the two subfields,some important methods concerning data-based control are intensively investigated.Within the framework of data-based modeling,main modeling technologies and control strategies are discussed,and then fundamental concepts and various algorithms are presented for the design of a data-based controller.Finally,some remaining challenges are suggested.