For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in...For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.展开更多
The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was p...The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%.展开更多
Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance ...Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research.展开更多
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar...With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.展开更多
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ...Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec...In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.展开更多
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav...The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.展开更多
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel...In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.展开更多
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect...Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.展开更多
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta...The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.展开更多
Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves...Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics.展开更多
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred...With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.展开更多
With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater envir...With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.展开更多
Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insuffic...Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints.展开更多
The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively...The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages.展开更多
In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct pi...In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm.展开更多
Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a s...Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.展开更多
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro...The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.展开更多
基金supported by the National Natural Science Foundation of China (62173333, 12271522)Beijing Natural Science Foundation (Z210002)the Research Fund of Renmin University of China (2021030187)。
文摘For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings.
基金financially supported by the National Key Research and Development Program of China(2022YFB3706800,2020YFB1710100)the National Natural Science Foundation of China(51821001,52090042,52074183)。
文摘The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%.
基金supported by the National Natural Science Foundation of China (No.62173281,52377217,U23A20651)Sichuan Science and Technology Program (No.24NSFSC0024,23ZDYF0734,23NSFSC1436)+2 种基金Dazhou City School Cooperation Project (No.DZXQHZ006)Technopole Talent Summit Project (No.KJCRCFH08)Robert Gordon University。
文摘Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research.
基金supported by the National Natural Science Foundation of China (52075420)the National Key Research and Development Program of China (2020YFB1708400)。
文摘With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.
文摘Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-014-3).
文摘In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.
文摘The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.
基金supported in part by the Natural Science Youth Foundation of Hebei Province under Grant F2019403207in part by the PhD Research Startup Foundation of Hebei GEO University under Grant BQ2019055+3 种基金in part by the Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant KLIGIP-2021A06in part by the Fundamental Research Funds for the Universities in Hebei Province under Grant QN202220in part by the Science and Technology Research Project for Universities of Hebei under Grant ZD2020344in part by the Guangxi Natural Science Fund General Project under Grant 2021GXNSFAA075029.
文摘In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.
文摘Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.42077232 and 42077235)the Key Research and Development Plan of Jiangsu Province(Grant No.BE2022156).
文摘The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.
基金support from the National Science Foundation of China(Grant Nos.62075078 and 62135004)the Knowledge Innovation Program of Wuhan-Shuguang Project(Grant No.2022010801020095).
文摘Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics.
基金supported by the National Science and Technology Innovation 2030 Next-Generation Artifical Intelligence Major Project(2018AAA0101801)the National Natural Science Foundation of China(72271188)。
文摘With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.
基金supported by Research Program supported by the National Natural Science Foundation of China(No.62201249)the Jiangsu Agricultural Science and Technology Innovation Fund(No.CX(21)1007)+2 种基金the Open Project of the Zhejiang Provincial Key Laboratory of Crop Harvesting Equipment and Technology(Nos.2021KY03,2021KY04)University-Industry Collaborative Education Program(No.201801166003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX22_1042).
文摘With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.
基金the financial support of this work from the National Natural Science Foundation of China(Grant No.11972073,Grant No.51974357,and Grant No.52274027)supported by China Postdoctoral Science Foundation(Grant No.2022M713204)Scientific Research and Technology Development Project of China National Petroleum Corporation(Grant No.2121DJ2301).
文摘Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints.
基金supported by the National Natural Science Foundation of China (Nos.52274048 and 52374017)Beijing Natural Science Foundation (No.3222037)the CNPC 14th five-year perspective fundamental research project (No.2021DJ2104)。
文摘The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages.
基金the Japan Society for the Promotion of Science,KAKENHI Grant Nos.20H04199 and 23H00475.
文摘In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm.
文摘Steganography is a technique for hiding secret messages while sending and receiving communications through a cover item.From ancient times to the present,the security of secret or vital information has always been a significant problem.The development of secure communication methods that keep recipient-only data transmissions secret has always been an area of interest.Therefore,several approaches,including steganography,have been developed by researchers over time to enable safe data transit.In this review,we have discussed image steganography based on Discrete Cosine Transform(DCT)algorithm,etc.We have also discussed image steganography based on multiple hashing algorithms like the Rivest–Shamir–Adleman(RSA)method,the Blowfish technique,and the hash-least significant bit(LSB)approach.In this review,a novel method of hiding information in images has been developed with minimal variance in image bits,making our method secure and effective.A cryptography mechanism was also used in this strategy.Before encoding the data and embedding it into a carry image,this review verifies that it has been encrypted.Usually,embedded text in photos conveys crucial signals about the content.This review employs hash table encryption on the message before hiding it within the picture to provide a more secure method of data transport.If the message is ever intercepted by a third party,there are several ways to stop this operation.A second level of security process implementation involves encrypting and decrypting steganography images using different hashing algorithms.
文摘The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.