Amid the landscape of Cloud Computing(CC),the Cloud Datacenter(DC)stands as a conglomerate of physical servers,whose performance can be hindered by bottlenecks within the realm of proliferating CC services.A linchpin ...Amid the landscape of Cloud Computing(CC),the Cloud Datacenter(DC)stands as a conglomerate of physical servers,whose performance can be hindered by bottlenecks within the realm of proliferating CC services.A linchpin in CC’s performance,the Cloud Service Broker(CSB),orchestrates DC selection.Failure to adroitly route user requests with suitable DCs transforms the CSB into a bottleneck,endangering service quality.To tackle this,deploying an efficient CSB policy becomes imperative,optimizing DC selection to meet stringent Qualityof-Service(QoS)demands.Amidst numerous CSB policies,their implementation grapples with challenges like costs and availability.This article undertakes a holistic review of diverse CSB policies,concurrently surveying the predicaments confronted by current policies.The foremost objective is to pinpoint research gaps and remedies to invigorate future policy development.Additionally,it extensively clarifies various DC selection methodologies employed in CC,enriching practitioners and researchers alike.Employing synthetic analysis,the article systematically assesses and compares myriad DC selection techniques.These analytical insights equip decision-makers with a pragmatic framework to discern the apt technique for their needs.In summation,this discourse resoundingly underscores the paramount importance of adept CSB policies in DC selection,highlighting the imperative role of efficient CSB policies in optimizing CC performance.By emphasizing the significance of these policies and their modeling implications,the article contributes to both the general modeling discourse and its practical applications in the CC domain.展开更多
Data security and user privacy have become crucial elements in multi-tenant data centers.Various traffic types in the multi-tenant data center in the cloud environment have their characteristics and requirements.In th...Data security and user privacy have become crucial elements in multi-tenant data centers.Various traffic types in the multi-tenant data center in the cloud environment have their characteristics and requirements.In the data center network(DCN),short and long flows are sensitive to low latency and high throughput,respectively.The traditional security processing approaches,however,neglect these characteristics and requirements.This paper proposes a fine-grained security enhancement mechanism(SEM)to solve the problem of heterogeneous traffic and reduce the traffic completion time(FCT)of short flows while ensuring the security of multi-tenant traffic transmission.Specifically,for short flows in DCN,the lightweight GIFT encryption method is utilized.For Intra-DCN long flows and Inter-DCN traffic,the asymmetric elliptic curve encryption algorithm(ECC)is utilized.The NS-3 simulation results demonstrate that SEM dramatically reduces the FCT of short flows by 70%compared to several conventional encryption techniques,effectively enhancing the security and anti-attack of traffic transmission between DCNs in cloud computing environments.Additionally,SEM performs better than other encryption methods under high load and in largescale cloud environments.展开更多
VERITAS NetBackup Data Center主机级备份与恢复解决方案适合多操作系统平台,为大规模的Unix、Linux、windows和NetWare环境提供全面的数据保护。通过NetBackup Data Center可以管理所有备份和恢复任务,为企业制定完全一致的备份策...VERITAS NetBackup Data Center主机级备份与恢复解决方案适合多操作系统平台,为大规模的Unix、Linux、windows和NetWare环境提供全面的数据保护。通过NetBackup Data Center可以管理所有备份和恢复任务,为企业制定完全一致的备份策略,包括为Oracle、SAP、Informix、Sybase、DB2UDB与Lotus Notes等提供的数据库识别和应用识别备份与恢复解决方案。展开更多
In modern datacenters, the most common method to solve the network latency problem is to minimize flow completion time during the transmission process. Following the soft real-time nature, the optimization of transpor...In modern datacenters, the most common method to solve the network latency problem is to minimize flow completion time during the transmission process. Following the soft real-time nature, the optimization of transport latency is relaxed to meet a flow's deadline in deadline-sensitive services. However, none of existing deadline-sensitive protocols consider deadline as a constraint condition of transmission.They can only simplify the objective of meeting a flow's deadline as a deadline-aware mechanism by assigning a higher priority for tight-deadline constrained flows to finish the transmission as soon as possible, which results in an unsatisfactory effect in the condition of high fan-in degree. It drives us to take a step back and rethink whether minimizing flow completion time is the optimal way in meeting flow's deadline. In this paper, we focus on the design of a soft real-time transport protocol with deadline constraint in datacenters and present a flow-based deadline scheduling scheme for datacenter networks(FBDS).FBDS makes the unilateral deadline-aware flow transmission with priority transform into a compound centralized single-machine deadlinebased flow scheduling decision. In addition, FBDS blocks the flow sets and postpones some flows with extra time until their deadlines to make room for the new arriving flows in order to improve the deadline meeting rate. Our simulation resultson flow completion time and deadline meeting rate reveal the potential of FBDS in terms of a considerable deadline-sensitive transport protocol for deadline-sensitive interactive services.展开更多
The proliferation of the global datasphere has forced cloud storage systems to evolve more complex architectures for different applications.The emergence of these application session requests and system daemon service...The proliferation of the global datasphere has forced cloud storage systems to evolve more complex architectures for different applications.The emergence of these application session requests and system daemon services has created large persistent flows with diverse performance requirements that need to coexist with other types of traffic.Current routing methods such as equal-cost multipath(ECMP)and Hedera do not take into consideration specific traffic characteristics nor performance requirements,which make these methods difficult to meet the quality of service(QoS)for high-priority flows.In this paper,we tailored the best routing for different kinds of cloud storage flows as an integer programming problem and utilized grey relational analysis(GRA)to solve this optimization problem.The resulting method is a GRAbased service-aware flow scheduling(GRSA)framework that considers requested flow types and network status to select appropriate routing paths for flows in cloud storage datacenter networks.The results from experiments carried out on a real traffic trace show that the proposed GRSA method can better balance traffic loads,conserve table space and reduce the average transmission delay for high-priority flows compared to ECMP and Hedera.展开更多
Decreasing the flow completion time(FCT) and increasing the throughput are two fundamental targets in datacenter networks(DCNs), but current mechanisms mostly focus on one of the problems. In this paper, we propose OF...Decreasing the flow completion time(FCT) and increasing the throughput are two fundamental targets in datacenter networks(DCNs), but current mechanisms mostly focus on one of the problems. In this paper, we propose OFMPC, an Open Flow based Multi Path Cooperation framework, to decrease FCT and increase the network throughput. OFMPC partitions the end-to-end transmission paths into two classes, which are low delay paths(LDPs) and high throughput paths(HTPs), respectively. Short flows are assigned to LDPs to avoid long queueing delay, while long flows are assigned to HTPs to guarantee their throughput. Meanwhile, a dynamic scheduling mechanism is presented to improve network efficiency. We evaluate OFMPC in Mininet emulator and a testbed, and the experimental results show that OFMPC can effectively decrease FCT. Besides, OFMPC also increases the throughput up to more than 84% of bisection bandwidth.展开更多
The fast growth of datacenter networks,in terms of both scale and structural complexity,has led to an increase of network failure and hence brings new challenges to network management systems.As network failure such a...The fast growth of datacenter networks,in terms of both scale and structural complexity,has led to an increase of network failure and hence brings new challenges to network management systems.As network failure such as node failure is inevitable,how to find fault detection and diagnosis approaches that can effectively restore the network communication function and reduce the loss due to failure has been recognized as an important research problem in both academia and industry.This research focuses on exploring issues of node failure,and presents a proactive fault diagnosis algorithm called heuristic breadth-first detection(HBFD),through dynamically searching the spanning tree,analyzing the dial-test data and choosing a reasonable threshold to locate fault nodes.Both theoretical analysis and simulation results demonstrate that HBFD can diagnose node failures effectively,and take a smaller number of detection and a lower false rate without sacrificing accuracy.展开更多
Cloud providers(e.g.,Google,Alibaba,Amazon)own large-scale datacenter networks that comprise thousands of switches and links.A loadbalancing mechanism is supposed to effectively utilize the bisection bandwidth.Both Eq...Cloud providers(e.g.,Google,Alibaba,Amazon)own large-scale datacenter networks that comprise thousands of switches and links.A loadbalancing mechanism is supposed to effectively utilize the bisection bandwidth.Both Equal-Cost Multi-Path(ECMP),the canonical solution in practice,and alternatives come with performance limitations or significant deployment challenges.In this work,we propose Closer,a scalable load balancing mechanism for cloud datacenters.Closer complies with the evaluation of technology including the deployment of Clos-based topologies,overlays for network virtualization,and virtual machine(VM)clusters.We decouple the system into centralized route calculation and distributed route decision to guarantee its flexibility and stability in large-scale networks.Leveraging In-band Network Telemetry(INT)to obtain precise link state information,a simple but efficient algorithm implements a weighted ECMP at the edge of fabric,which enables Closer to proactively map the flows to the appropriate path and avoid the excessive congestion of a single link.Closer achieves 2 to 7 times better flow completion time(FCT)at 70%network load than existing schemes that work with same hardware environment.展开更多
Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially l...Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially located in different datacenters,thereby resulting in huge delays during data transmis-sion.Edge computing minimizes the delays in data transmission and supports the fixed storage strategy for scientific workflow private datasets.Therefore,this fixed storage strategy creates huge amount of bottleneck in its storage capacity.At this juncture,integrating the merits of cloud computing and edge computing during the process of rationalizing the data placement of scientific workflows and optimizing the energy and time incurred in data transmission across different datacentres remains a challenge.In this paper,Adaptive Cooperative Foraging and Dispersed Foraging Strategies-Improved Harris Hawks Optimization Algorithm(ACF-DFS-HHOA)is proposed for optimizing the energy and data transmission time in the event of placing data for a specific scientific workflow.This ACF-DFS-HHOA considered the factors influencing transmission delay and energy consumption of data centers into account during the process of rationalizing the data placement of scientific workflows.The adaptive cooperative and dispersed foraging strategy is included in HHOA to guide the position updates that improve population diversity and effectively prevent the algorithm from being trapped into local optimality points.The experimental results of ACF-DFS-HHOA confirmed its predominance in minimizing energy and data transmission time incurred during workflow execution.展开更多
文摘Amid the landscape of Cloud Computing(CC),the Cloud Datacenter(DC)stands as a conglomerate of physical servers,whose performance can be hindered by bottlenecks within the realm of proliferating CC services.A linchpin in CC’s performance,the Cloud Service Broker(CSB),orchestrates DC selection.Failure to adroitly route user requests with suitable DCs transforms the CSB into a bottleneck,endangering service quality.To tackle this,deploying an efficient CSB policy becomes imperative,optimizing DC selection to meet stringent Qualityof-Service(QoS)demands.Amidst numerous CSB policies,their implementation grapples with challenges like costs and availability.This article undertakes a holistic review of diverse CSB policies,concurrently surveying the predicaments confronted by current policies.The foremost objective is to pinpoint research gaps and remedies to invigorate future policy development.Additionally,it extensively clarifies various DC selection methodologies employed in CC,enriching practitioners and researchers alike.Employing synthetic analysis,the article systematically assesses and compares myriad DC selection techniques.These analytical insights equip decision-makers with a pragmatic framework to discern the apt technique for their needs.In summation,this discourse resoundingly underscores the paramount importance of adept CSB policies in DC selection,highlighting the imperative role of efficient CSB policies in optimizing CC performance.By emphasizing the significance of these policies and their modeling implications,the article contributes to both the general modeling discourse and its practical applications in the CC domain.
基金This work is supported by the National Natural Science Foundation of China(62102046,62072056)the Natural Science Foundation of Hunan Province(2022JJ30618,2020JJ2029)the Scientific Research Fund of Hunan Provincial Education Department(22B0300).
文摘Data security and user privacy have become crucial elements in multi-tenant data centers.Various traffic types in the multi-tenant data center in the cloud environment have their characteristics and requirements.In the data center network(DCN),short and long flows are sensitive to low latency and high throughput,respectively.The traditional security processing approaches,however,neglect these characteristics and requirements.This paper proposes a fine-grained security enhancement mechanism(SEM)to solve the problem of heterogeneous traffic and reduce the traffic completion time(FCT)of short flows while ensuring the security of multi-tenant traffic transmission.Specifically,for short flows in DCN,the lightweight GIFT encryption method is utilized.For Intra-DCN long flows and Inter-DCN traffic,the asymmetric elliptic curve encryption algorithm(ECC)is utilized.The NS-3 simulation results demonstrate that SEM dramatically reduces the FCT of short flows by 70%compared to several conventional encryption techniques,effectively enhancing the security and anti-attack of traffic transmission between DCNs in cloud computing environments.Additionally,SEM performs better than other encryption methods under high load and in largescale cloud environments.
文摘VERITAS NetBackup Data Center主机级备份与恢复解决方案适合多操作系统平台,为大规模的Unix、Linux、windows和NetWare环境提供全面的数据保护。通过NetBackup Data Center可以管理所有备份和恢复任务,为企业制定完全一致的备份策略,包括为Oracle、SAP、Informix、Sybase、DB2UDB与Lotus Notes等提供的数据库识别和应用识别备份与恢复解决方案。
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2014JBM011 and No.2014YJS021in part by NSFC under Grant No.62171200,61422101,and 62132017+2 种基金in part by the Ph.D.Programs Foundation of MOE of China under Grant No.20130009110014in part by "NCET" under Grant No.NCET-12-0767in part by China Postdoctoral Science Foundation under Grant No.2015M570028,2015M580970
文摘In modern datacenters, the most common method to solve the network latency problem is to minimize flow completion time during the transmission process. Following the soft real-time nature, the optimization of transport latency is relaxed to meet a flow's deadline in deadline-sensitive services. However, none of existing deadline-sensitive protocols consider deadline as a constraint condition of transmission.They can only simplify the objective of meeting a flow's deadline as a deadline-aware mechanism by assigning a higher priority for tight-deadline constrained flows to finish the transmission as soon as possible, which results in an unsatisfactory effect in the condition of high fan-in degree. It drives us to take a step back and rethink whether minimizing flow completion time is the optimal way in meeting flow's deadline. In this paper, we focus on the design of a soft real-time transport protocol with deadline constraint in datacenters and present a flow-based deadline scheduling scheme for datacenter networks(FBDS).FBDS makes the unilateral deadline-aware flow transmission with priority transform into a compound centralized single-machine deadlinebased flow scheduling decision. In addition, FBDS blocks the flow sets and postpones some flows with extra time until their deadlines to make room for the new arriving flows in order to improve the deadline meeting rate. Our simulation resultson flow completion time and deadline meeting rate reveal the potential of FBDS in terms of a considerable deadline-sensitive transport protocol for deadline-sensitive interactive services.
基金supported by National Natural Science Foundation of China(Nos.61861013,61662018)Science and Technology Major Project of Guangxi(No.AA18118031)+2 种基金Guangxi Natural Science Foundation of China(No.2018 GXNSFAA050028)the Doctoral Research Foundation of Guilin University of Electronic Science and Technology(No.UF19033Y)Director Fund project of Key Laboratory of Cognitive Radio and Information Processing of Ministry of Education(No.CRKL190102)。
文摘The proliferation of the global datasphere has forced cloud storage systems to evolve more complex architectures for different applications.The emergence of these application session requests and system daemon services has created large persistent flows with diverse performance requirements that need to coexist with other types of traffic.Current routing methods such as equal-cost multipath(ECMP)and Hedera do not take into consideration specific traffic characteristics nor performance requirements,which make these methods difficult to meet the quality of service(QoS)for high-priority flows.In this paper,we tailored the best routing for different kinds of cloud storage flows as an integer programming problem and utilized grey relational analysis(GRA)to solve this optimization problem.The resulting method is a GRAbased service-aware flow scheduling(GRSA)framework that considers requested flow types and network status to select appropriate routing paths for flows in cloud storage datacenter networks.The results from experiments carried out on a real traffic trace show that the proposed GRSA method can better balance traffic loads,conserve table space and reduce the average transmission delay for high-priority flows compared to ECMP and Hedera.
基金supported by the State Key Development Program for Basic Research of China under Grant No.2012CB315806the National Natural Science Foundation of China under Grant Nos.61103225 and 61379149+1 种基金Jiangsu Province Natural Science Foundation of China under Grant No.BK20140070Jiangsu Future Networks Innovation Institute Prospective Research Project on Future Networks under Grant No.BY2013095-1-06
文摘Decreasing the flow completion time(FCT) and increasing the throughput are two fundamental targets in datacenter networks(DCNs), but current mechanisms mostly focus on one of the problems. In this paper, we propose OFMPC, an Open Flow based Multi Path Cooperation framework, to decrease FCT and increase the network throughput. OFMPC partitions the end-to-end transmission paths into two classes, which are low delay paths(LDPs) and high throughput paths(HTPs), respectively. Short flows are assigned to LDPs to avoid long queueing delay, while long flows are assigned to HTPs to guarantee their throughput. Meanwhile, a dynamic scheduling mechanism is presented to improve network efficiency. We evaluate OFMPC in Mininet emulator and a testbed, and the experimental results show that OFMPC can effectively decrease FCT. Besides, OFMPC also increases the throughput up to more than 84% of bisection bandwidth.
基金supported by the National Natural Science Foundation of China(61877067 61572435)+3 种基金the joint fund project of the Ministry of Education–the China Mobile(MCM20170103)Xi’an Science and Technology Innovation Project(201805029YD7CG13-6)Ningbo Natural Science Foundation(2016A610035 2017A610119)
文摘The fast growth of datacenter networks,in terms of both scale and structural complexity,has led to an increase of network failure and hence brings new challenges to network management systems.As network failure such as node failure is inevitable,how to find fault detection and diagnosis approaches that can effectively restore the network communication function and reduce the loss due to failure has been recognized as an important research problem in both academia and industry.This research focuses on exploring issues of node failure,and presents a proactive fault diagnosis algorithm called heuristic breadth-first detection(HBFD),through dynamically searching the spanning tree,analyzing the dial-test data and choosing a reasonable threshold to locate fault nodes.Both theoretical analysis and simulation results demonstrate that HBFD can diagnose node failures effectively,and take a smaller number of detection and a lower false rate without sacrificing accuracy.
基金supported by National Key Research and Development Project of China(2019YFB1802501)Research and Development Program in Key Areas of Guangdong Province(2018B010113001)Open Foundation of Science and Technology on Communication Networks Laboratory(No.6142104180106)。
文摘Cloud providers(e.g.,Google,Alibaba,Amazon)own large-scale datacenter networks that comprise thousands of switches and links.A loadbalancing mechanism is supposed to effectively utilize the bisection bandwidth.Both Equal-Cost Multi-Path(ECMP),the canonical solution in practice,and alternatives come with performance limitations or significant deployment challenges.In this work,we propose Closer,a scalable load balancing mechanism for cloud datacenters.Closer complies with the evaluation of technology including the deployment of Clos-based topologies,overlays for network virtualization,and virtual machine(VM)clusters.We decouple the system into centralized route calculation and distributed route decision to guarantee its flexibility and stability in large-scale networks.Leveraging In-band Network Telemetry(INT)to obtain precise link state information,a simple but efficient algorithm implements a weighted ECMP at the edge of fabric,which enables Closer to proactively map the flows to the appropriate path and avoid the excessive congestion of a single link.Closer achieves 2 to 7 times better flow completion time(FCT)at 70%network load than existing schemes that work with same hardware environment.
文摘Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially located in different datacenters,thereby resulting in huge delays during data transmis-sion.Edge computing minimizes the delays in data transmission and supports the fixed storage strategy for scientific workflow private datasets.Therefore,this fixed storage strategy creates huge amount of bottleneck in its storage capacity.At this juncture,integrating the merits of cloud computing and edge computing during the process of rationalizing the data placement of scientific workflows and optimizing the energy and time incurred in data transmission across different datacentres remains a challenge.In this paper,Adaptive Cooperative Foraging and Dispersed Foraging Strategies-Improved Harris Hawks Optimization Algorithm(ACF-DFS-HHOA)is proposed for optimizing the energy and data transmission time in the event of placing data for a specific scientific workflow.This ACF-DFS-HHOA considered the factors influencing transmission delay and energy consumption of data centers into account during the process of rationalizing the data placement of scientific workflows.The adaptive cooperative and dispersed foraging strategy is included in HHOA to guide the position updates that improve population diversity and effectively prevent the algorithm from being trapped into local optimality points.The experimental results of ACF-DFS-HHOA confirmed its predominance in minimizing energy and data transmission time incurred during workflow execution.