Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel...Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel insights into physical criteria for delineating surface fault-rupture hazard zones(SRHZs)along ruptured strike-slip faults.To achieve this objective,three trench studies across the surface rupture were conducted on the Pazarcık segment of the EAFZ to collect field data,and earthquake recurrence intervals were interpreted using Bayesian statistics from previously conducted paleoseismological trenchings.The results of the proposed model indicate that the Pazarcık segment produced five significant surface-rupturing earthquakes in the last∼11 kyr:E1:11.13±1.74 kyr,E2:7.62±1.20 kyr,E3:5.34±1.05 kyr,E4:1.82±0.93 kyr,and E5:0.35±0.11 kyr.In addition,the recurrence intervals of destructive earthquakes on the subject in question range from 0.6 kyr to 4.8 kyr.Considering that the last significant earthquake occurred in 1513,the longest time since the most recent surface fault rupturing earthquake on this particular segment was 511 years.These results indicate that,in terms of the theoretical recurrence interval of earthquakes that can create surface ruptures on the Pazarcık segment,the period in which the February 6,2023,earthquake occurred was within the end of the expected return period.As a result,the potential for a devastating earthquake in the near future is not foreseen on the same fault.Finally,the SRHZ proposed for the Pazarcık section of Gölbaşıvillage was calculated as a 61-meter-wide offset on the fault lineament to reduce the negativities that may occur in the ruptured area in the future.It is recommended to take into account this width in the settlement of this area and nearby areas.展开更多
Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface r...Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface ruptures and secondary disasters surrounding the epicentral area is important for post-earthquake emergency and disaster assessments.High-resolution Maxar and GF-2 satellite data were used after the events to extract the location of the rupture surrounding the first epicentral area.The results show that the length of the interpreted surface rupture zone(part of)is approximately 75 km,with a coseismic sinistral dislocation of 2-3 m near the epicenter;however,this reduced to zero at the tip of the southwest section of the East Anatolia Fault Zone.Moreover,dense soil liquefaction pits were triggered along the rupture trace.These events are in the western region of the Eurasian Seismic Belt and result from the subduction and collision of the Arabian and African Plates toward the Eurasian Plate.The western region of the Chinese mainland and its adjacent areas are in the eastern section of the Eurasian Seismic Belt,where seismic activity is controlled by the collision of the Indian and Eurasian Plates.Both China and Türkiye have independent tectonic histories.展开更多
The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone ha...The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8.展开更多
The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces o...The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces of the main-shock were deployed in July and recorded a great amount of aftershocks. This paper focuses on the data interpretation of two arrays across the central main fault, the northern array line 1 and southern array line 3. The fault zone trapped waves recorded by the two arrays were used to study the structure of the central main fault and the difference between the northern and southern portions. The results show that the widths of the rupture zone are about 170-200 m and 200-230 m for northern and southern portions respectively. And the corresponding dip angles are 80° and 70°. The seismic velocity inside the fracture zone is about one half of the host rock. By comparison, the northern portion of the rupture zone is slightly narrower and steeper than the southern portion. Besides these differences, one more interesting and important difference is the positions of the rupture zone with respect to surface breaking traces. At the northern portion, the rupture zone is centered at the surface breaking trace, while at the southern portion it is not but is shifted to the northwest. This difference reflects the difference of rupture behaviors between two portions of the central main fault. The width of the rupture zone is smaller than that of MS.1 Kunlun earthquake though these two earthquakes have almost the same magnitudes. Multiple ruptures may be one factor to cause the narrower rupture zone.展开更多
This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.I...This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.展开更多
We employed a double-difference algorithm (hypoDD) to relocate earthquakes within the region bounded by 66°E-78°E and 32°N-42°N in the period of 1964-2003 reported by the International Seismologi...We employed a double-difference algorithm (hypoDD) to relocate earthquakes within the region bounded by 66°E-78°E and 32°N-42°N in the period of 1964-2003 reported by the International Seismological Center (ISC). The improved hypocentral locations delineate a double-layered Wadati-Benioff zone in the eastern Hindu Kush intermediate seismic belt. Based on this feature and other evidences, we propose that the intermediate-depth earthquakes beneath the Pamir-Hindu Kush region may occur in two collided subduction zones with opposite dip directions.展开更多
The 2,026 earthquake events registered by the Sichuan regional digital seismic network and mobile seismic array after the April 20th, 2013 Lushan earthquake and 28,188 pieces of data were selected to determine direct ...The 2,026 earthquake events registered by the Sichuan regional digital seismic network and mobile seismic array after the April 20th, 2013 Lushan earthquake and 28,188 pieces of data were selected to determine direct P waves arrival times. We applied the tomographic method to inverse the characteristics of the velocity structure for the three-dimensional (3D) P wave in the mid-upper crust of the seismic source region of the Lushan earthquake. The imaging results were combined with the apparent magnetization inversion and magnetotelluric (MT) sounding retest data to comprehensively study the causes of the deep seismogenic environment in the southern section of the Longmenshan fault zone and explore the formation of the Lushan earthquake. Research has shown that there are obvious differences in velocity structure and magnetic distribution between the southern and northern sections of the Longmenshan fault zone. The epicenter of the Lushan earthquake is located near the boundary of the high and low-velocity anomalies and favorable for a high-velocity section. Moreover, at the epicenter of the Lushan earthquake located on the magnetic dome boundary of Ya'an, the development of high velocity and magnetic solid medium favors the accumulation and release of strain energy. Low- velocity anomalies are distributed underneath the are of seismogenic origin, The inversion results of the MT retest data after the April 20th Lushan earthquake also indicate that there a high-conductor anomaly occurs under the area of seismogenic origin of the Lushan earthquake, Therefore, we speculated that the presence of a high-conductivity anomaly and low-velocity anomaly underneath the seismogenic body of the Lushan earthquake could be related to the existence of fluids. The role of fluids caused the weakening of the seismogenic layer inside the mid-upper crust and resulted in a seismogenic fault that was prone to rupture and pIayed a triggering role in the Lushan earthquake.展开更多
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surf...Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surface rup-ture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.展开更多
The seismicity of Longrnenshan fault zone and its vicinities before the 12 May 2008 Wenchuan Ms8.0 earthquake is studied. Based on the digital seismic waveform data observed from regional seismic networks and mobile s...The seismicity of Longrnenshan fault zone and its vicinities before the 12 May 2008 Wenchuan Ms8.0 earthquake is studied. Based on the digital seismic waveform data observed from regional seismic networks and mobile stations, the focal mechanism solutions are determined. Our analysis results show that the seismicities of Longmenshan fault zone before the 12 May 2008 Wenchuan earthquake were in stable state. No obvious phenomena of seismic activity intensifying appeared. According to focal mechanism solutions of some small earthquakes before the 12 May 2008 Wenchuan earthquake, the direction of principal compressive stress P-axis is WNW-ESE. The two hypocenter fault planes are NE-striking and NW-striking. The plane of NE direction is among N50°-70°E, the dip angles of fault planes are 60°-70° and it is very steep. The faultings of most earthquakes are dominantly characterized by dip-slip reverse and small part of faultings present strike-slip. The azimuths of principal compressive stress, the strikes of source fault planes and the dislocation types calculated from some small earthquakes before the 12 May 2008 Wenchuan earthquake are in accordance with that of the main shock. The average stress field of micro-rupture along the Longmenshan fault zone before the great earthquake is also consistent with that calculated from main shock. Zipingpu dam is located in the east side 20 km from the initial rupture area of the 12 May 2008 Wenchuan earthquake. The activity increment of small earthquakes in the Zipingpu dam is in the period of water discharging. The source parameter results of the small earthquakes which occurred near the initial rupture area of the 12 May 2008 Wenchuan earthquake indicate that the focal depths are 5 to 14 km and the source parameters are identical with that of earthquake.展开更多
This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2...This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake.Vertical offset and horizontal displacement at the trench site were 2.8 m(NW side up)and 4.8 m(right-lateral),respectively.The fault zone formed in Triassic sandstone,siltstone,and shale about 500 m away from the Yingxiu-Beichuan fault,a major fault in the Longmenshan fault system.A trench survey across the coseismic fault,and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about0.5 and 250-300 m in widths,respectively,and that the fault strikes N62°E and dips 68° to NW.Quaternary conglomerates were recovered beneath the fault in the drilling,so that the fault moved at least 55 m along the coseismic slip zone,experiencing about 18 events of similar sizes.The fault core is composed of grayish gouge(GG) and blackish gouge(BG) with very complex slip-zone structures.BG contains low-crystalline graphite of about 30 %.High-velocity friction experiments were conducted at normal stresses of 0.6-2.1 MPa and slip rates of 0.1-2.1 m/s.Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient lpto steadystate friction coefficient lssover a slip-weakening distance Dc.Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces,respectively.Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.展开更多
On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on ana...On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on analysis and interpretation to high-resolution satellite images as well as differential interferometric synthetic aperture radar (D-InSAR) data from the satellite Envisat SAR, coupled with seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 40 km-long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in Qira County. It is characterized by distinct linear traces and simple structure with 1-3-m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone many secondary fractures and fault-bounded blocks are seen, exhibiting remarkable extension. The eoseismic deformation affected a large area 100~100 km2. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. Because of the big deformation gradients near the seismogenic fault, no interference fringes are seen on images, and what can be determined is a vertical displacement 70 cm or more between the two fault walls. According to the epicenter and differential occurrence times from the National Earthquake Information Center, China Earthquake Network Center, Harvard and USGS, it is suggested that the seismic fault ruptured from north to south.展开更多
Following a quasi-dynamic scheme proposed by Minear and Toksoz (1970), thermal structures of subduction zonesfor different models by finite element method (FEM) were calculated. Density distribution and p-wave anomaly...Following a quasi-dynamic scheme proposed by Minear and Toksoz (1970), thermal structures of subduction zonesfor different models by finite element method (FEM) were calculated. Density distribution and p-wave anomaly ofsubduction zones were calculated at the same time. Comparing with seismological evidences and results of laboratories. it is proposed that earthquakes occurred below 400 km depth are probably controlled by anti-crackmechanism.展开更多
Lanzhou Institute of Seismology, China Seismological Bureau, Lanzhou 730000, China 2) Institute of Geology, China Seismological Bureau, Beijing 100029, China
During the Wenchuan Fault Scientific Drilling Project,we determined the values of total mercury(HgT)and gaseous elemental mercury(GEM) from drilled cores and drilling mud,respectively.Geochemical analysis shows HgT va...During the Wenchuan Fault Scientific Drilling Project,we determined the values of total mercury(HgT)and gaseous elemental mercury(GEM) from drilled cores and drilling mud,respectively.Geochemical analysis shows HgT values ranging from 0.24 to 6.45 ng/g for the Penguan complex and from 2.90 to 137.54 ng/g for T3 sediment.The average levels of HgT for the Penguan complex and T3 sediments are 1.81 ± 0.26 ng/g and23.96 ± 4.80 ng/g,respectively.Major anomalous peaks of HgT appear at depth of 614,731,993 and 1,107 m,which correspond to the long-term high seismic activity during crustal deformation in response to tectonic stresses.Gaseous elemental mercury dissolved in drilling mud was also analyzed.We found fluid inflow zones with high GEM at depths of 590-750 m,suggesting that fluid-filled ruptures exist in the LMS fault zone.It indicates that mercury provides geochemical evidence for inflow zones and ruptures/fault zones in the Wenchuan Ms 8.0 earthquake fault.展开更多
The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and...The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and Ms 7 Lushan earthquakes. This study determines characteristics of the structural geology of the Longmenshan fault to evaluate how it influenced the two aforementioned earthquakes. This research was done within a Geo- information Technologies (GiT) environment based on multi-source remote sensing and crustal movement data extracted from the Global Positioning System (GPS). The spatial distribution of the southern segment of the Longmenshan fault zone was comprehensively analyzed to study both earthquakes. The study revealed that the Wenehuan and Lushan earthquakes occurred on two relatively independent faults. In addition, there was a nearly constant-velocity crustal movement zone between the two epicenters that probably had a compressive stress with slow motion. Furthermore, the central fault and a mountain back fault gradually merged from north to south. The Lushan earthquake of the Wenchuan earthquake. was not an affershock The research showed that fault zones within 30-50 km of State Highway 318 are intensive and complex. In addition, crustal movement velocity decreased rapidly, with a strong multi-directional shear zone. Thus, activity in that zone was likely stronger than in the northern part over the medium to long term.展开更多
This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of ...This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of comprehensive project of Institute of Geology, China Earthquake Administration, trying to understand deformation processes in Longmenshan fault zones and eventually to reproduce Wenchuan earthquake by modeling based on measured mechanical and transport properties. Outcrop studies could be integrated with those performed on samples recovered from fault zone drilling, during the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, to understand along-fault and depth variation of fault zone properties. The hanging wall side of the fault zone consists of weakly-foliated, clayey fault gouge of about 1 m in width and of several fault breccia zones of 30-40 m in total width. We could not find any pseudotachylite at this outcrop. Displacement during the Wenchuan earthquake is highly localized within the fault gouge layer along narrower slipping-zones of about 10 to 20 mm in width. This is an important constraint for analyzing thermal pressurization, an important dynamic weakening mechanism of faults. Overlapping patterns of striations on slickenside surface suggest that seismic slip at a given time occurred in even narrower zone of a few to several millimeters, so that localization of deformation must have occurred within a slipping zone during coseismic fault motion. Fault breccia zones are bounded by thin black gouge layers containing amorphous carbon. Fault gouge contains illite and chlorite minerals, but not smectite. Clayey fault gouge next to coseismic slipping zone also contains amorphous carbon and small amounts of graphite. The structural observations and mineralogical data obtained from outcrop exposures of the fault zone of the Wenchuan earthquake can be compared with those obtained from the WFSD-1 and WFSD-2 boreholes, which have been drilled very close to the Hongkou outcrop. The presence of carbon and graphite, observed next to the slipping-zone, may affect the mechanical properties of the fault and also provide useful information about coseismic chemical changes.展开更多
The Ms7. 0 Lushan earthquake is directly related to the activity of Longmenshan fault zone. In this article, deformation monitoring data in Longmenshan and its surrounding areas were analyzed and the result shows that...The Ms7. 0 Lushan earthquake is directly related to the activity of Longmenshan fault zone. In this article, deformation monitoring data in Longmenshan and its surrounding areas were analyzed and the result shows that the activity trend of Longmenshan fault zone depends on the relative motion between Bayan Hat Block and Sichuan Basin, and the main power of the movement comes from the Tibetan Plateau and the upper Yangtze craton massif of push. In recent years, the Longmenshan and its surrounding areas is one of the main seismogenic area in China's Mainland. In this paper, combination with seismogenic area of geological structure and crustal deformation observation data analysis resuhs, the relationship between the earthquake and Longmenshan fault zone activity was discussed, and the key monitoring areas in the next five years were proposed.展开更多
In this paper,we introduce the tectonic setting,historical earthquake focal mechanisms and geodynamic environment of Tienshan and its neighboring regions, and draw a conclusion that large earthquakes in the Tienshan s...In this paper,we introduce the tectonic setting,historical earthquake focal mechanisms and geodynamic environment of Tienshan and its neighboring regions, and draw a conclusion that large earthquakes in the Tienshan seismic zone are governed mainly by the pushing from Hindu Kush-Pamir syntax. Secondly,the relationship of large earthquakes in the Hindu Kush-Pamir region and the Tienshan seismic zone is investigated,and synchronization features are found existing in the grouped large earthquakes between the large earthquakes in two regions. The relationship between intermediate-focus large earthquakes in Hindu Kush-Pamir and shallow large earthquakes in the Tienshan seismic zone is also discussed. The same synchronization characteristics are found,and the intensity and frequency of intermediate-focus earthquakes are fiercer, while large earthquakes in the Tienshan seismic zone are more intense,with a wider distribution range. The above results confirm the geodynamic correlativity between Hindu Kush-Pamir and the Tienshan seismic zone from the viewpoint of seismicity.展开更多
Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km a...Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km are calculated.By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one,the effect of earth curvature on the calculation results is analyzed quantitatively.First,we systematically summarize previous researches related to the northern Tanlu fault zone,divide the fault zone as detailed as possible,give the geometric parameters of each segment,and establish a segmented structural model of the northern Tanlu fault zone.Second,we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory.The result shows the Coulomb stress changes are no more than 0.003 MPa,which proves the great earthquake did not significantly change the stress state of the fault zone.Finally,we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one.The average disparity between them is about 7.7%on the northern Tanlu fault zone and is 16.8%on the Fangzheng graben,the maximum disparity on this graben reaches up to 25.5%.It indicates that the effect of earth curvature can not be ignored.So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.展开更多
基金This contribution was partially supported by the Turkish government through the 1002-C project in Natural Disasters Focused Fieldwork Emergency Support Program managed by the TUBITAK.I am grateful to F.Koçbulut and S.Koşaroğlu for helping me with the trenching studies.I also gratefully acknowledge H.Sözbilir,M.Nas,and E.Akgün for comments and suggestions.Furthermore,I extend my gratitude to the anonymous referees for their constructive criticisms and insightful feedback during the evaluation phase of this manuscript.
文摘Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel insights into physical criteria for delineating surface fault-rupture hazard zones(SRHZs)along ruptured strike-slip faults.To achieve this objective,three trench studies across the surface rupture were conducted on the Pazarcık segment of the EAFZ to collect field data,and earthquake recurrence intervals were interpreted using Bayesian statistics from previously conducted paleoseismological trenchings.The results of the proposed model indicate that the Pazarcık segment produced five significant surface-rupturing earthquakes in the last∼11 kyr:E1:11.13±1.74 kyr,E2:7.62±1.20 kyr,E3:5.34±1.05 kyr,E4:1.82±0.93 kyr,and E5:0.35±0.11 kyr.In addition,the recurrence intervals of destructive earthquakes on the subject in question range from 0.6 kyr to 4.8 kyr.Considering that the last significant earthquake occurred in 1513,the longest time since the most recent surface fault rupturing earthquake on this particular segment was 511 years.These results indicate that,in terms of the theoretical recurrence interval of earthquakes that can create surface ruptures on the Pazarcık segment,the period in which the February 6,2023,earthquake occurred was within the end of the expected return period.As a result,the potential for a devastating earthquake in the near future is not foreseen on the same fault.Finally,the SRHZ proposed for the Pazarcık section of Gölbaşıvillage was calculated as a 61-meter-wide offset on the fault lineament to reduce the negativities that may occur in the ruptured area in the future.It is recommended to take into account this width in the settlement of this area and nearby areas.
基金funded by the Basic Research Program of the Institute of Earthquake Forecasting,China Earthquake Administration(Grant Nos.CEAIEF20220102,2021IEF0505,and CEAIEF2022050502)the National Natural Science Foundation of China(Grant Nos.42072248 and 42041006)the National Key Research and Development Program of China(Grant Nos.2021YFC3000601-3 and 2019YFE0108900)。
文摘Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface ruptures and secondary disasters surrounding the epicentral area is important for post-earthquake emergency and disaster assessments.High-resolution Maxar and GF-2 satellite data were used after the events to extract the location of the rupture surrounding the first epicentral area.The results show that the length of the interpreted surface rupture zone(part of)is approximately 75 km,with a coseismic sinistral dislocation of 2-3 m near the epicenter;however,this reduced to zero at the tip of the southwest section of the East Anatolia Fault Zone.Moreover,dense soil liquefaction pits were triggered along the rupture trace.These events are in the western region of the Eurasian Seismic Belt and result from the subduction and collision of the Arabian and African Plates toward the Eurasian Plate.The western region of the Chinese mainland and its adjacent areas are in the eastern section of the Eurasian Seismic Belt,where seismic activity is controlled by the collision of the Indian and Eurasian Plates.Both China and Türkiye have independent tectonic histories.
基金Chinese Joint Seismological Science Foundation (201017).
文摘The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8.
基金sponsored by National Natural Science Foundation of China (No.40674043, 90814001)China Earthquake Admini-stration (Wenchuan Earthquake Scientific Survey 03-05)The contribution No. of this paper is RCEG 0905 of Geophysical Prospecting Center,China Earthquake Administration
文摘The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces of the main-shock were deployed in July and recorded a great amount of aftershocks. This paper focuses on the data interpretation of two arrays across the central main fault, the northern array line 1 and southern array line 3. The fault zone trapped waves recorded by the two arrays were used to study the structure of the central main fault and the difference between the northern and southern portions. The results show that the widths of the rupture zone are about 170-200 m and 200-230 m for northern and southern portions respectively. And the corresponding dip angles are 80° and 70°. The seismic velocity inside the fracture zone is about one half of the host rock. By comparison, the northern portion of the rupture zone is slightly narrower and steeper than the southern portion. Besides these differences, one more interesting and important difference is the positions of the rupture zone with respect to surface breaking traces. At the northern portion, the rupture zone is centered at the surface breaking trace, while at the southern portion it is not but is shifted to the northwest. This difference reflects the difference of rupture behaviors between two portions of the central main fault. The width of the rupture zone is smaller than that of MS.1 Kunlun earthquake though these two earthquakes have almost the same magnitudes. Multiple ruptures may be one factor to cause the narrower rupture zone.
基金supported by the "Wenchuan Earthquake Fault Scientific Drilling" of the National Science Foundation of China
文摘This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.
基金partly sup-ported by the National Fundamental Science Program of China under(No.2004cb418406)the National Natural Science Foundation of China(No.90814002)Key Projects in the National Science & Technology PillarProgram during the Eleventh Five-year Plan Period(No.2008BAC38B02-4)
文摘We employed a double-difference algorithm (hypoDD) to relocate earthquakes within the region bounded by 66°E-78°E and 32°N-42°N in the period of 1964-2003 reported by the International Seismological Center (ISC). The improved hypocentral locations delineate a double-layered Wadati-Benioff zone in the eastern Hindu Kush intermediate seismic belt. Based on this feature and other evidences, we propose that the intermediate-depth earthquakes beneath the Pamir-Hindu Kush region may occur in two collided subduction zones with opposite dip directions.
基金supported by China earthquake scientific array exploration-northern section of North South seismic belt (20130811)National Natural Science Foundation of China (41474057)Science for earthquake Resllience of China Earthquake Administration (XH15040Y)
文摘The 2,026 earthquake events registered by the Sichuan regional digital seismic network and mobile seismic array after the April 20th, 2013 Lushan earthquake and 28,188 pieces of data were selected to determine direct P waves arrival times. We applied the tomographic method to inverse the characteristics of the velocity structure for the three-dimensional (3D) P wave in the mid-upper crust of the seismic source region of the Lushan earthquake. The imaging results were combined with the apparent magnetization inversion and magnetotelluric (MT) sounding retest data to comprehensively study the causes of the deep seismogenic environment in the southern section of the Longmenshan fault zone and explore the formation of the Lushan earthquake. Research has shown that there are obvious differences in velocity structure and magnetic distribution between the southern and northern sections of the Longmenshan fault zone. The epicenter of the Lushan earthquake is located near the boundary of the high and low-velocity anomalies and favorable for a high-velocity section. Moreover, at the epicenter of the Lushan earthquake located on the magnetic dome boundary of Ya'an, the development of high velocity and magnetic solid medium favors the accumulation and release of strain energy. Low- velocity anomalies are distributed underneath the are of seismogenic origin, The inversion results of the MT retest data after the April 20th Lushan earthquake also indicate that there a high-conductor anomaly occurs under the area of seismogenic origin of the Lushan earthquake, Therefore, we speculated that the presence of a high-conductivity anomaly and low-velocity anomaly underneath the seismogenic body of the Lushan earthquake could be related to the existence of fluids. The role of fluids caused the weakening of the seismogenic layer inside the mid-upper crust and resulted in a seismogenic fault that was prone to rupture and pIayed a triggering role in the Lushan earthquake.
基金Joint Seismological Science Foundation of China (No. 201017).
文摘Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990s up to the present, the characteristics of distribution and displacement of surface rup-ture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.
基金supported by National Key Basic Research 973bNational Scientific technology support plan (2006BAC01B02-01-01).
文摘The seismicity of Longrnenshan fault zone and its vicinities before the 12 May 2008 Wenchuan Ms8.0 earthquake is studied. Based on the digital seismic waveform data observed from regional seismic networks and mobile stations, the focal mechanism solutions are determined. Our analysis results show that the seismicities of Longmenshan fault zone before the 12 May 2008 Wenchuan earthquake were in stable state. No obvious phenomena of seismic activity intensifying appeared. According to focal mechanism solutions of some small earthquakes before the 12 May 2008 Wenchuan earthquake, the direction of principal compressive stress P-axis is WNW-ESE. The two hypocenter fault planes are NE-striking and NW-striking. The plane of NE direction is among N50°-70°E, the dip angles of fault planes are 60°-70° and it is very steep. The faultings of most earthquakes are dominantly characterized by dip-slip reverse and small part of faultings present strike-slip. The azimuths of principal compressive stress, the strikes of source fault planes and the dislocation types calculated from some small earthquakes before the 12 May 2008 Wenchuan earthquake are in accordance with that of the main shock. The average stress field of micro-rupture along the Longmenshan fault zone before the great earthquake is also consistent with that calculated from main shock. Zipingpu dam is located in the east side 20 km from the initial rupture area of the 12 May 2008 Wenchuan earthquake. The activity increment of small earthquakes in the Zipingpu dam is in the period of water discharging. The source parameter results of the small earthquakes which occurred near the initial rupture area of the 12 May 2008 Wenchuan earthquake indicate that the focal depths are 5 to 14 km and the source parameters are identical with that of earthquake.
基金supported by State Key Laboratory of Earthquake Dynamics (project No.LED2010A03)Wenchuan Earthquake Fault Scientific Drilling Project (WFSD-09)
文摘This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake.Vertical offset and horizontal displacement at the trench site were 2.8 m(NW side up)and 4.8 m(right-lateral),respectively.The fault zone formed in Triassic sandstone,siltstone,and shale about 500 m away from the Yingxiu-Beichuan fault,a major fault in the Longmenshan fault system.A trench survey across the coseismic fault,and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about0.5 and 250-300 m in widths,respectively,and that the fault strikes N62°E and dips 68° to NW.Quaternary conglomerates were recovered beneath the fault in the drilling,so that the fault moved at least 55 m along the coseismic slip zone,experiencing about 18 events of similar sizes.The fault core is composed of grayish gouge(GG) and blackish gouge(BG) with very complex slip-zone structures.BG contains low-crystalline graphite of about 30 %.High-velocity friction experiments were conducted at normal stresses of 0.6-2.1 MPa and slip rates of 0.1-2.1 m/s.Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient lpto steadystate friction coefficient lssover a slip-weakening distance Dc.Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces,respectively.Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.
基金supported by the National Natural Science Foundation of China(40940020,40874006)National Key Laboratory of Earthquake Dynamics(LED2010A02,LED2008A06)
文摘On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on analysis and interpretation to high-resolution satellite images as well as differential interferometric synthetic aperture radar (D-InSAR) data from the satellite Envisat SAR, coupled with seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 40 km-long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in Qira County. It is characterized by distinct linear traces and simple structure with 1-3-m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone many secondary fractures and fault-bounded blocks are seen, exhibiting remarkable extension. The eoseismic deformation affected a large area 100~100 km2. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. Because of the big deformation gradients near the seismogenic fault, no interference fringes are seen on images, and what can be determined is a vertical displacement 70 cm or more between the two fault walls. According to the epicenter and differential occurrence times from the National Earthquake Information Center, China Earthquake Network Center, Harvard and USGS, it is suggested that the seismic fault ruptured from north to south.
文摘Following a quasi-dynamic scheme proposed by Minear and Toksoz (1970), thermal structures of subduction zonesfor different models by finite element method (FEM) were calculated. Density distribution and p-wave anomaly ofsubduction zones were calculated at the same time. Comparing with seismological evidences and results of laboratories. it is proposed that earthquakes occurred below 400 km depth are probably controlled by anti-crackmechanism.
基金State Key Basic Research Development and Programming Project (G19980407-04) and the Project during the ninth Five-Year Plan of Gansu Province (GK973-2-110A).
文摘Lanzhou Institute of Seismology, China Seismological Bureau, Lanzhou 730000, China 2) Institute of Geology, China Seismological Bureau, Beijing 100029, China
基金sponsored by the Wenchuan Fault Scientific Drilling Project(WFSD)
文摘During the Wenchuan Fault Scientific Drilling Project,we determined the values of total mercury(HgT)and gaseous elemental mercury(GEM) from drilled cores and drilling mud,respectively.Geochemical analysis shows HgT values ranging from 0.24 to 6.45 ng/g for the Penguan complex and from 2.90 to 137.54 ng/g for T3 sediment.The average levels of HgT for the Penguan complex and T3 sediments are 1.81 ± 0.26 ng/g and23.96 ± 4.80 ng/g,respectively.Major anomalous peaks of HgT appear at depth of 614,731,993 and 1,107 m,which correspond to the long-term high seismic activity during crustal deformation in response to tectonic stresses.Gaseous elemental mercury dissolved in drilling mud was also analyzed.We found fluid inflow zones with high GEM at depths of 590-750 m,suggesting that fluid-filled ruptures exist in the LMS fault zone.It indicates that mercury provides geochemical evidence for inflow zones and ruptures/fault zones in the Wenchuan Ms 8.0 earthquake fault.
基金funded by the National Natural Science Foundation of China(Grant No.41001253)Chinese Postdoctoral Science Foundation(Grant No.2012M521717)National Science and Technology Major Project(Grant No.03-Y30B069001-13/15)
文摘The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and Ms 7 Lushan earthquakes. This study determines characteristics of the structural geology of the Longmenshan fault to evaluate how it influenced the two aforementioned earthquakes. This research was done within a Geo- information Technologies (GiT) environment based on multi-source remote sensing and crustal movement data extracted from the Global Positioning System (GPS). The spatial distribution of the southern segment of the Longmenshan fault zone was comprehensively analyzed to study both earthquakes. The study revealed that the Wenehuan and Lushan earthquakes occurred on two relatively independent faults. In addition, there was a nearly constant-velocity crustal movement zone between the two epicenters that probably had a compressive stress with slow motion. Furthermore, the central fault and a mountain back fault gradually merged from north to south. The Lushan earthquake of the Wenchuan earthquake. was not an affershock The research showed that fault zones within 30-50 km of State Highway 318 are intensive and complex. In addition, crustal movement velocity decreased rapidly, with a strong multi-directional shear zone. Thus, activity in that zone was likely stronger than in the northern part over the medium to long term.
基金supported by State Key Laboratory of Earthquake Dynamics(project No. LED2008A03) Wenchuan Earthquake Fault Scientific Drilling Project(WFSD),by a Grant-in-Aid for JSPS Fellows(No.201007605) to the first author (T.Togo),and by a 2009 Grant-in-Aid of Fukada Geological Institute
文摘This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of comprehensive project of Institute of Geology, China Earthquake Administration, trying to understand deformation processes in Longmenshan fault zones and eventually to reproduce Wenchuan earthquake by modeling based on measured mechanical and transport properties. Outcrop studies could be integrated with those performed on samples recovered from fault zone drilling, during the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, to understand along-fault and depth variation of fault zone properties. The hanging wall side of the fault zone consists of weakly-foliated, clayey fault gouge of about 1 m in width and of several fault breccia zones of 30-40 m in total width. We could not find any pseudotachylite at this outcrop. Displacement during the Wenchuan earthquake is highly localized within the fault gouge layer along narrower slipping-zones of about 10 to 20 mm in width. This is an important constraint for analyzing thermal pressurization, an important dynamic weakening mechanism of faults. Overlapping patterns of striations on slickenside surface suggest that seismic slip at a given time occurred in even narrower zone of a few to several millimeters, so that localization of deformation must have occurred within a slipping zone during coseismic fault motion. Fault breccia zones are bounded by thin black gouge layers containing amorphous carbon. Fault gouge contains illite and chlorite minerals, but not smectite. Clayey fault gouge next to coseismic slipping zone also contains amorphous carbon and small amounts of graphite. The structural observations and mineralogical data obtained from outcrop exposures of the fault zone of the Wenchuan earthquake can be compared with those obtained from the WFSD-1 and WFSD-2 boreholes, which have been drilled very close to the Hongkou outcrop. The presence of carbon and graphite, observed next to the slipping-zone, may affect the mechanical properties of the fault and also provide useful information about coseismic chemical changes.
基金supported by the Special Fund for Earthquake Research in the Public Interest(201208009201308009)
文摘The Ms7. 0 Lushan earthquake is directly related to the activity of Longmenshan fault zone. In this article, deformation monitoring data in Longmenshan and its surrounding areas were analyzed and the result shows that the activity trend of Longmenshan fault zone depends on the relative motion between Bayan Hat Block and Sichuan Basin, and the main power of the movement comes from the Tibetan Plateau and the upper Yangtze craton massif of push. In recent years, the Longmenshan and its surrounding areas is one of the main seismogenic area in China's Mainland. In this paper, combination with seismogenic area of geological structure and crustal deformation observation data analysis resuhs, the relationship between the earthquake and Longmenshan fault zone activity was discussed, and the key monitoring areas in the next five years were proposed.
基金jointly sponsored by the National Key Technology R&D Program(2012BAK19B01-04)the Special Fund of Youth Working Group,Institute of Earthquake Science,China Earthquake Administration
文摘In this paper,we introduce the tectonic setting,historical earthquake focal mechanisms and geodynamic environment of Tienshan and its neighboring regions, and draw a conclusion that large earthquakes in the Tienshan seismic zone are governed mainly by the pushing from Hindu Kush-Pamir syntax. Secondly,the relationship of large earthquakes in the Hindu Kush-Pamir region and the Tienshan seismic zone is investigated,and synchronization features are found existing in the grouped large earthquakes between the large earthquakes in two regions. The relationship between intermediate-focus large earthquakes in Hindu Kush-Pamir and shallow large earthquakes in the Tienshan seismic zone is also discussed. The same synchronization characteristics are found,and the intensity and frequency of intermediate-focus earthquakes are fiercer, while large earthquakes in the Tienshan seismic zone are more intense,with a wider distribution range. The above results confirm the geodynamic correlativity between Hindu Kush-Pamir and the Tienshan seismic zone from the viewpoint of seismicity.
基金This study was supported financially by the National Key R&D Program of China(No.2018YFC1503704)the National Natural Science Foundation of China(No.41874003)。
文摘Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km are calculated.By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one,the effect of earth curvature on the calculation results is analyzed quantitatively.First,we systematically summarize previous researches related to the northern Tanlu fault zone,divide the fault zone as detailed as possible,give the geometric parameters of each segment,and establish a segmented structural model of the northern Tanlu fault zone.Second,we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory.The result shows the Coulomb stress changes are no more than 0.003 MPa,which proves the great earthquake did not significantly change the stress state of the fault zone.Finally,we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one.The average disparity between them is about 7.7%on the northern Tanlu fault zone and is 16.8%on the Fangzheng graben,the maximum disparity on this graben reaches up to 25.5%.It indicates that the effect of earth curvature can not be ignored.So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.