期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Activity budget of Rhinopithecus bieti at Tibet:Effects of day length,temperature and food availability 被引量:8
1
作者 Zuofu XIANG Sheng HUO Wen XIAO 《Current Zoology》 SCIE CAS CSCD 北大核心 2010年第6期650-659,共10页
How animals allocate their time to various activities has significant consequences for their survival because they reflect the different constraints on time-energy balances. Many ecological variables, such as day leng... How animals allocate their time to various activities has significant consequences for their survival because they reflect the different constraints on time-energy balances. Many ecological variables, such as day length, temperature, food availabil- ity, are supposed to effect on activity budgets allocation of temperate primates. To examine the potential influence of these three variables, the activity budgets ofRhinopithecus bieti was studied at Xiaochangdu, Tibet from June 2003 to March 2005. Pearson correlations were utilized to assess potential relationships between activity budget and day length, food availability and temperature, and stepwise multiple regressions to identify the priority of resting and other activities (activities besides feeding, moving and resting). Time spent resting and doing "other activities" is positively related to day length, temperature and food availability. No significant correlations were found between feeding/moving time and any of these variables. This suggests that foraging time (feeding + moving) takes priority over rest and other activities. Day length and foraging time (as independent variables) were related to the time spent in the other two activities besides feeding/moving (as dependent variables). Both time spent resting and in "other activities" were highly significant positive functions of day length, with the latter a highly significant negative function of feeding time and moving time. Resting time may therefore be interpreted as taking priority over "other activities" time. These results provide further evidence of the importance of day length, temperature and food availability to seasonal activity budgets [Current Zoology 56 (6): 650q559, 2010]. 展开更多
关键词 Activity budget Rhinopithecus bieti day length TEMPERATURE Food availability Activity pattem
下载PDF
Effect of day length and temperature on the pollen fertility in photo(thermo)-sensitive genic male-sterile rice
2
作者 HUANG Qinglui and TANG Xihua,Shanghai Inst of Piant physiology,Acad Sinica,Xhanghai 200032,China 《Chinese Rice Research Newsletter》 1996年第2期4-5,共2页
The effect of day length and temperature on the pollen fertility of five photoperiod-sensitive genic male-sterile japonica rice lines (PGMSR) and three temperature-sensitive genic malesterile indica rice lines (TGMSR)... The effect of day length and temperature on the pollen fertility of five photoperiod-sensitive genic male-sterile japonica rice lines (PGMSR) and three temperature-sensitive genic malesterile indica rice lines (TGMSR) were investigated in phytotron. The light source used for illumination was xenon lamp, and the light intensity which plant accepted on the leaf surface was 300—350μmol photons ms. The results indicated that pollens of PGMSR 7001S and E47S aborted completely whereas a little part of 31116S pollens appeared normal under long day photoperiod (LD,25℃,15h) (Table 1). High temperature (HT, 30℃, 12h) and lower temperature (LT, 展开更多
关键词 length Effect of day length and temperature on the pollen fertility in photo sensitive genic male-sterile rice THERMO
下载PDF
Interrelationships between Length of the Day, Moon Distance, Phanerozoic Geodynamic Cycles, Tidal Dissipation and Earth’s Core: Review and Analysis
3
作者 Heinz-Jürgen Brink 《International Journal of Geosciences》 CAS 2024年第5期396-415,共20页
The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around... The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate. 展开更多
关键词 length of the day Moon Distance Phanerozoic Geodynamic Cycles Tidal Dissipation Earth’s Core
下载PDF
The Coincidence of Critical Day Length Recognition for Florigen Gene Expression and Floral Transition under Long-Day Conditions in Rice 被引量:6
4
作者 Hironori Itoh Takeshi Izawa 《Molecular Plant》 SCIE CAS CSCD 2013年第3期635-649,共15页
The photoperiodic control of flowering time is essential for the adaptation of plants to variable environments and for successful reproduction. The identification of genes encoding florigens, which had been elusive bu... The photoperiodic control of flowering time is essential for the adaptation of plants to variable environments and for successful reproduction. The identification of genes encoding florigens, which had been elusive but were supposedly synthesized in leaves and then transmitted to shoot apices to induce floral transitions, has greatly advanced our understanding of the photoperiodic regulation of flowering. Studies on the photoperiodism of Arabidopsis, a model long-day plant, revealed the molecular mechanisms regulating the expression of the Arabidopsis florigen gene FT, which is gradually induced in response to increase in day length. By contrast, in rice, a model short-day plant, the expression of the florigen gene Hd3a (an FTortholog in rice) is regulated in an on/off fashion, with strong induction under short-day conditions and repression under long-day conditions. This critical day length dependence of Hd3a expression enables rice to recognize a slight change in the photoperiod as a trigger to initiate floral induction. Rice possesses a second florigen gene, RFT1, which can be expressed to induce floral transition under non-inductive long-day conditions. The complex transcriptional regulation of florigen genes and the resulting precise control over flowering time provides rice with the adaptability required for a crop species of increasing global importance. 展开更多
关键词 FLORIGEN photoperiodic flowering critical day length recognition gating mechanism rice breeding.
原文传递
Detection of different-time-scale signals in the length of day variation based on EEMD analysis technique 被引量:5
5
作者 Wenbin Shen Cunchao Peng 《Geodesy and Geodynamics》 2016年第3期180-186,共7页
Scientists pay great attention to different-time-scale signals in the lengllh of day (LOD) variations △LOD, which provide signatures of the Earth's interior structure, couplings among different layers, and potenti... Scientists pay great attention to different-time-scale signals in the lengllh of day (LOD) variations △LOD, which provide signatures of the Earth's interior structure, couplings among different layers, and potential excitations of ocean and atmosphere. In this study, based on the ensemble empirical mode decomposition (EEMD), we analyzed the latest time series of △LOD data spanning from January 1962 to March 2015. We observed the signals with periods and amplitudes of about 0.5 month and 0.19 ms, 1.0 month and 0.19 ms, 0.5 yr and 0.22 ms, 1.0 yr and 0.18 ms, 2.28 yr and 0.03 ms, 5.48 yr and 0.05 ms, respectively, in coincidence with the results of predecessors. In addition, some signals that were previously not definitely observed by predecessors were detected in this study, with periods and amplitudes of 9.13 d and 0.12 ms, 13.69 yr and 0.10 ms, respectively. The mechanisms of the LOD fluctuations of these two signals are still open. 展开更多
关键词 Earth rotation Variation of length of day Ensemble empirical mode decomposition Periodic signals LOD fluctuation mechanism
下载PDF
Introducing atmospheric angular momentum into prediction of length of day change by generalized regression neural network model 被引量:9
6
作者 王琪洁 杜亚男 刘建 《Journal of Central South University》 SCIE EI CAS 2014年第4期1396-1401,共6页
The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmosph... The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmospheric angular momentum(AAM) function is tightly correlated with the LOD changes, it was introduced into the GRNN prediction model to further improve the accuracy of prediction. Experiments with the observational data of LOD changes show that the prediction accuracy of the GRNN model is 6.1% higher than that of BP network, and after introducing AAM function, the improvement of prediction accuracy further increases to 14.7%. The results show that the GRNN with AAM function is an effective prediction method for LOD changes. 展开更多
关键词 general regression neural network(GRNN) length of day atmospheric angular momentum(AAM) function prediction
下载PDF
27.3-day and Average 13.6-day Periodic Oscillations in the Earth’s Rotation Rate and Atmospheric Pressure Fields Due to Celestial Gravitation Forcing 被引量:1
7
作者 李国庆 宗海锋 张庆云 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期45-58,共14页
Variation in length of day of the Earth (LOD, equivalent to the Earth's rotation rate) versus change in atmospheric geopotential height fields and astronomical parameters were analyzed for the years 1962-2006. This... Variation in length of day of the Earth (LOD, equivalent to the Earth's rotation rate) versus change in atmospheric geopotential height fields and astronomical parameters were analyzed for the years 1962-2006. This revealed that there is a 27.3-day and an average 13.6-day periodic oscillation in LOD and atmospheric pressure fields following lunar revolution around the Earth. Accompanying the alternating change in celestial gravitation forcing on the Earth and its atmosphere, the Earth's LOD changes from minimum to maximum, then to minimum, and the atmospheric geopotential height fields in the tropics oscillate from low to high, then to low. The 27.3-day and average 13.6-day periodic atmospheric oscillation in the tropics is proposed to be a type of strong atmospheric tide, excited by celestial gravitation forcing. A formula for a Tidal Index was derived to estimate the strength of the celestial gravitation forcing, and a high degree of correlation was found between the Tidal Index determined by astronomical parameters, LOD, and atmospheric geopotential height. The reason for the atmospheric tide is periodic departure of the lunar orbit from the celestial equator during lunar revolution around the Earth. The alternating asymmetric change in celestial gravitation forcing on the Earth and its atmosphere produces a "modulation" to the change in the Earth's LOD and atmospheric pressure fields. 展开更多
关键词 atmospheric tide intraseasonal atmospheric oscillation length of day (LOD) lunar declination astro-meteorology
下载PDF
Phenological study of Sargassum thunbergii (Fucales, Phaeophyta) in Lidao Bay, Rongcheng, China 被引量:1
8
作者 刘玮 吴海一 +1 位作者 詹冬梅 段德麟 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2016年第3期498-506,共9页
We conducted a phenological evaluation of Sargassum thunbergii, a common algal species, along the coast of Lidao Bay, Rongcheng, China. The local S. thunbergii population entered a maturation period from early June to... We conducted a phenological evaluation of Sargassum thunbergii, a common algal species, along the coast of Lidao Bay, Rongcheng, China. The local S. thunbergii population entered a maturation period from early June to mid-August, when seawater temperature was 14.4 to 25. 1℃. Our results suggest an increase in temperatttre and day length during this period initiated thalli maturation. Inhabitants of the low tidal zone had higher thalli length and biomass compared with those from the mid- and high tidal zones. We observed a switch in the length frequency distribution and contribution of length classes to biomass between the small (〈20 cm) and long (20-79.9 cm) length classes at the time of thallus maturity. This suggests there is a trade-off between sexual reproduction and vegetative regeneration. 展开更多
关键词 Sargassum thunbergii temperature day length tidal position length hierarchy
下载PDF
Thermal and photoperiodic requirements of the seedling stage of three tropical forest species
9
作者 Fabrina Bolzan Martins Mábele de Cássia Ferreira +1 位作者 Flávia Fernanda Azevedo Fagundes Gabriel Wilson Lorena Florêncio 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期209-220,共12页
Air temperature and photoperiod play an important role in the seedling development for tropical forest species.Both variables are sensitive to climate,and so evaluating thermal and photoperiodic effects on seedling de... Air temperature and photoperiod play an important role in the seedling development for tropical forest species.Both variables are sensitive to climate,and so evaluating thermal and photoperiodic effects on seedling development is fundamental,especially for climate change studies.Methods to quantify thermal time and the energy required for plants to reach a development stage include air temperature and cardinal temperatures.The photoperiod will also affect physiological reactions of a plant and thus its development.Here we evaluated the six thermal time methods widely used to compute thermal requirement,and identified the influence of the photoperiod from the 2015 and2016 growing seasons and 12 sowing dates in Itajubá,Minas Gerais state,Brazil,on seedling development of three native tropical forest species Psidium guajava L.(Myrtaceae),Citharexylum myrianthum Cham.(Verbenaceae),and Bixa orellana L.(Bixaceae).The method used to quantify thermal time influenced the analytical results of seedling development;the one that considered three cardinal temperatures and compared them with the mean air temperature(Method5)performed better in computing thermal requirements.The influence of photoperiod on seedling development was inconclusive for the three species,but all three developed better in mild temperatures(between 13.3℃and 26.9℃)with a photoperiod shorter than 13 h. 展开更多
关键词 PHYLLOCHRON Thermal time day length Seedling stage PHENOLOGY
下载PDF
Effects of Sowing Time on the Seed Yield of Quinoa (Chenopodium quinoa Willd) in South Kanto, Japan
10
作者 Katsunori Isobe Hikaru Sugiyama +6 位作者 Daisuke Okuda Yudai Murase Hiroki Harada Misa Miyamoto Syunsuke Koide Masao Higo Yoichi Torigoe 《Agricultural Sciences》 2016年第3期146-153,共8页
The objective of the present study was to determine the optimum sowing time of three quinoa ecotypes (Altipllano, sea level, and valley) for high seed yields in south Kanto, Japan. Pot experiments were conducted in th... The objective of the present study was to determine the optimum sowing time of three quinoa ecotypes (Altipllano, sea level, and valley) for high seed yields in south Kanto, Japan. Pot experiments were conducted in the experimental field at Nihon University during 2011, 2012, 2013, and 2014. In this experiment, the following quinoa varieties were used NL-6, Baer Cajon and Cauquenes (sea-level type), Amarilla de Marangani, Blanca de Junin, CICA-127, ECU-420, ECU-525, Ingapirica, and Narino (valley type), 94R and Isluga (Altiplano type). The quinoa seeds were sown on March 29, June 17 and September 22, 2011;March 27, June 17 and August 28, 2012;March 26, June 15 and 5 September 5, 2013;and March 27, June 17 and August 28, 2014. When the sea-level type and Altiplano type seeds were sowed from March to September, the seeds could be gained in all sowing plots. However, the seed weights of all varieties were the highest in the sowing plots of March. And the seed weights in the sowing plot of March were significantly higher than that in the other sowing plots. The sea-level type and Altiplano type quinoa had almost the same seed growth reaction for day length and day temperature. Thus, to gain a high seed yield of the sea-level and Altiplano type quinoa, March was the optimum sowing time in south Kanto, Japan. When the valley-type seeds were sowed from March to June, the seeds could not be gained, except in 2012. In 2012, the seed weights and seed numbers in sowing plots of March and June were significantly lower than those in the sowing plot of September. Thus, to obtain a high seed yield of the valley type quinoa, the optimum sowing time in south Kanto, Japan was from August to September. 展开更多
关键词 day length day Temperature ECOTYPE Sowing Time QUINOA
下载PDF
Spatial and Temporal Variations of Atmospheric Angular Momentum and Its Relation to the Earth Length of Day 被引量:3
11
作者 杨萍 石文静 +2 位作者 肖子牛 董仕 任菊章 《Journal of Meteorological Research》 SCIE 2014年第1期150-161,共12页
The characteristics of atmospheric-angular-momentum (AAM) and length-of-day (LOD) on different timescales are investigated in this paper, on the basis of the NECP/NCAR reanalysis data and an LOD dataset for 1962-2... The characteristics of atmospheric-angular-momentum (AAM) and length-of-day (LOD) on different timescales are investigated in this paper, on the basis of the NECP/NCAR reanalysis data and an LOD dataset for 1962-2010. The variation and overall trend of the AAM anomaly (AAMA) at different latitudes are presented, and the relationship between AAMA and LOD is discussed. The AAMAs in different latitude regions exhibit different patterns of variation, and the AAMA in the tropics makes a dominant contribution to the global AAMA. In the tropics, the AAMA propagates poleward to the extratropical regions. It is confirmed that a downward propagation of the AAMA occurs in the lower stratosphere. Correlation analysis shows that the relationship between AAMA and LOD varies significantly on different timescales. Specifically, the tropical AAMA is positively correlated with LOD on short timescales, but they are not obviously correlated on long timescales. This indicates that the interaction between AAM and the earth's angular momentum follows the conservative restriction on short timescales, but the influence of the earth angular momentum on that of the atmosphere depends on the interaction process on long timescales. 展开更多
关键词 atmospheric angular momentum spatial and temporal variations propagation characteristics length of day
原文传递
Multichannel singular spectrum analysis of the axial atmospheric angular momentum 被引量:4
12
作者 Leonid Zotov N.S.Sidorenkov +2 位作者 Ch.Bizouard C.K.Shum Wenbin Shen 《Geodesy and Geodynamics》 2017年第6期433-442,共10页
Earth's variable rotation is mainly produced by the variability of the AAM(atmospheric angular momentum). In particular, the axial AAM component X_3, which undergoes especially strong variations,induces changes in ... Earth's variable rotation is mainly produced by the variability of the AAM(atmospheric angular momentum). In particular, the axial AAM component X_3, which undergoes especially strong variations,induces changes in the Earth's rotation rate. In this study we analysed maps of regional input into the effective axial AAM from 1948 through 2011 from NCEP/NCAR reanalysis. Global zonal circulation patterns related to the LOD(length of day) were described. We applied MSSA(Multichannel Singular Spectrum Analysis) jointly to the mass and motion components of AAM, which allowed us to extract annual, semiannual, 4-mo nth, quasi-biennial, 5-year, and low-frequency oscillations. PCs(Principal components) strongly related to ENSO(El Nino southern oscillation) were released. They can be used to study ENSO-induced changes in pressure and wind fields and their coupling to LOD. The PCs describing the trends have captured slow atmospheric circulation changes possibly related to climate variability. 展开更多
关键词 Earth's variable rotation Atmospheric circulation AAM(Atmospheric angular momentum) MSSA(Multichannel singular spectrum analysis) ENSO(El Nino southern oscillation) LOD(length of day
下载PDF
Interannual variations in the length of day and ENSO events in 1982-1983 and 1997-1998
13
作者 郑大伟 廖新浩 +4 位作者 赵志弘 李志林 丁晓利 周永宏 陈永奇 《Science China Mathematics》 SCIE 2001年第1期128-136,共10页
The length of day series during the period of 1962.0-2000.0, the atmospheric angular momentum and the Southern Oscillation Index are adopted to analyze the relationships among the EN-SO events that have occurred since... The length of day series during the period of 1962.0-2000.0, the atmospheric angular momentum and the Southern Oscillation Index are adopted to analyze the relationships among the EN-SO events that have occurred since 1960, the changes in the length of day and the atmospheric angular momentum. Attention is particularly given to the different effects of the 1982-1983 and 1997-1998 ENSO events on the variations of Earth rotation. The synthetic excitation effects of multi-scale atmospheric oscillations on the anomalous variations of the interannual rates of Earth rotation are revealed by means of the time-frequency spectrum of the wavelet transform. 展开更多
关键词 change in length of day atmospheric angular momentum ENSO events.
原文传递
Interannual variations in length of day and atmospheric angular momentum, and their seasonal associations with El Ni^o/Southern Oscillation-like sea surface temperature patterns
14
作者 Yuefeng LI Ziniu XIAO +3 位作者 Wenjing SHI Qi ZHONG Qiguang WANG Huanlian LI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2017年第4期751-764,共14页
This study examines the seasonal connections between the interannual variations in LOD (length of day)/ AAMglobe (the relative atmospheric angular momentum for the whole globe) and the ENSO-like SST (El Nifio/ So... This study examines the seasonal connections between the interannual variations in LOD (length of day)/ AAMglobe (the relative atmospheric angular momentum for the whole globe) and the ENSO-like SST (El Nifio/ Southern Oscillation-like sea surface temperature) pattern and corresponding zonal and vertical circulations. Consistent with previous studies, the ENSO-like SST impact the following season LOD/AAMglobe, with the strongest correlations in DJF (December, January, and February), when it is likely to be the peak E1 Nino/La Nifia period. Lag correlations between the interannual variations in LOD/AAMglobe and surface temperature, and the interannual variations in LOD and both zonal circulation and vertical airflow around the equator, consistently indicate that the LOD/AAMglobe reflect the potential impacts of variations in the Earth's rotation rate on the following season's sea surface temperatures (SST) over the tropical central and eastern pattern is located). Pacific (where the ENSO-like SST Moreover, the centers of strongest variation in the AAMcolumn (the relative atmospheric angular momentum for an air column and the unit mass over a square meter) are located over the mid-latitudinal North Pacific in DJF and MAM (March, April, and May), and over the mid-latitudinal South Pacific in JJA (June, July, and August) and SON (September, October, and November). This suggests that the AAMcolumn over the mid-latitudinal Pacific around 30°N (30~S) dominate the modulation of Earth's rotation rate, and then impact the variations in LOD during DJF and MAM (JJA and SON). 展开更多
关键词 four season features interannual variation length of day atmospheric angular momentum ENSO-likeSST pattern
原文传递
GIGANTEA Shapes the Photoperiodic Rhythms of Thermomorphogenic Growth in Arabidopsis 被引量:5
15
作者 Young-Joon Park Jae Young Kim +3 位作者 June-Hee Lee Byoung-Doo Lee Nam-Chon Paek Chung-Mo Park 《Molecular Plant》 SCIE CAS CSCD 2020年第3期459-470,共12页
Plants maintain their internal temperature under environments with fluctuating temperatures by adjusting their morphology and architecture,an adaptive process termed thermomorphogenesis.Notably,the rhythmic patterns o... Plants maintain their internal temperature under environments with fluctuating temperatures by adjusting their morphology and architecture,an adaptive process termed thermomorphogenesis.Notably,the rhythmic patterns of plant thermomorphogenesis are governed by day-length information.However,it remains elusive how thermomorphogenic rhythms are regulated by photoperiod.Here,we show that warm temperatures enhance the accumulation of the chaperone GIGANTEA(Gl),which thermostabilizes the DELLA protein,REPRESSOR OF ga1-3(RGA),under long days,thereby attenuating PHYTOCHROME INTERACTING FACTOR 4(PIF4)-mediated thermomorphogenesis.In contrast,under short days,when Gl accumulation is reduced,RGA is readily degraded through the gibberellic acid-mediated ubiquitination-proteasome pathway,promoting thermomorphogenic growth.These data indicate that the GI-RGA-PIF4 signaling module enables plant thermomorphogenic responses to occur in a day-length-dependent manner.We propose that the Gl-mediated integration of photoperiodic and temperature information shapes thermomorphogenic rhythms,which enable plants to adapt to diel fluctuations in day length and temperature during seasonal transitions. 展开更多
关键词 thermomorphogenesis day length GL RGA PIF4
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部