In this paper,a day-ahead electricity market bidding problem with multiple strategic generation company(GEN-CO)bidders is studied.The problem is formulated as a Markov game model,where GENCO bidders interact with each...In this paper,a day-ahead electricity market bidding problem with multiple strategic generation company(GEN-CO)bidders is studied.The problem is formulated as a Markov game model,where GENCO bidders interact with each other to develop their optimal day-ahead bidding strategies.Considering unobservable information in the problem,a model-free and data-driven approach,known as multi-agent deep deterministic policy gradient(MADDPG),is applied for approximating the Nash equilibrium(NE)in the above Markov game.The MAD-DPG algorithm has the advantage of generalization due to the automatic feature extraction ability of the deep neural networks.The algorithm is tested on an IEEE 30-bus system with three competitive GENCO bidders in both an uncongested case and a congested case.Comparisons with a truthful bidding strategy and state-of-the-art deep reinforcement learning methods including deep Q network and deep deterministic policy gradient(DDPG)demonstrate that the applied MADDPG algorithm can find a superior bidding strategy for all the market participants with increased profit gains.In addition,the comparison with a conventional-model-based method shows that the MADDPG algorithm has higher computational efficiency,which is feasible for real-world applications.展开更多
This paper addresses two issues that concern the electricity market participants under the European day-ahead market(DAM)framework,namely the feasibility of the attained schedules and the non-confiscation of cleared v...This paper addresses two issues that concern the electricity market participants under the European day-ahead market(DAM)framework,namely the feasibility of the attained schedules and the non-confiscation of cleared volumes.To address the first issue,new resource-specific orders,i.e.,thermal orders for thermal generating units,demand response orders for load responsive resources,and energy limited orders for storage resources,are proposed and incorporated in the existing European DAM clearing problem.To address the second issue,two approaches which lead to a non-confiscatory market are analyzed:①discriminatory pricing with side-payments(U.S.paradigm);and②non-discriminatory pricing excluding out-ofmoney orders(European paradigm).A comparison is performed between the two approaches to investigate the most appropriate pricing rule in terms of social welfare,derived revenues for the sellers,and efficiency of the attained results.The proposed model with new resource-specific products is evaluated in a European test system,achieving robust solutions.The feasibility of the attained schedules is demonstrated when using resource-specific orders compared with block orders.Finally,the results indicate the supremacy of discriminatory pricing with side-payments compared with the current European pricing rule.展开更多
Being capable of aggregating multiple energy resources, the energy service company(ESCO) has been regarded as a promising alternative for improving power system flexibility and facilitating the consumption of renewabl...Being capable of aggregating multiple energy resources, the energy service company(ESCO) has been regarded as a promising alternative for improving power system flexibility and facilitating the consumption of renewable resources in the electricity market. Considering the uncertain variables in day-ahead(DA) market trading, an ESCO can hardly determine their accurate probability distribution functions. Traditional interval optimization methods are used to process these uncertain variables without specific probability distribution functions.However, the lower and upper bounds of the intervals may change due to extreme weather conditions and other emergent events. Hence, a dual interval optimization based trading strategy(DIOTS) for ESCO in a DA market with bilateral contracts(BCs) is proposed. First, we transfer the dual interval optimization model into a simple model consisting of several interval optimization models. Then, a pessimistic preference ordering method is applied to solve the derived model. Case studies illustrating an actual test system corroborate the validity and the robustness of the proposed model, and also reveal that ECSO is critical in improving power system flexibility and facilitating the ability of absorbing renewable resources.展开更多
为实现我国电力资源大范围优化配置,打破省间电力市场交易壁垒,强调电力商品的经济性。文章在借鉴欧洲区域价格耦合项目(Price Coupling of Regions,PCR)成功经验的基础上,试图建立适用于我国省间电力统一市场的联合优化出清模型。文章...为实现我国电力资源大范围优化配置,打破省间电力市场交易壁垒,强调电力商品的经济性。文章在借鉴欧洲区域价格耦合项目(Price Coupling of Regions,PCR)成功经验的基础上,试图建立适用于我国省间电力统一市场的联合优化出清模型。文章旨在为建立适用于我国电力市场模式以及建成一个可以成熟运行的现货市场提供科学借鉴。展开更多
This paper proposes the day-ahead electricity price forecasting using the artificial neural networks (ANN) and weighted least square (WLS) technique in the restructured electricity markets. Price forecasting is ve...This paper proposes the day-ahead electricity price forecasting using the artificial neural networks (ANN) and weighted least square (WLS) technique in the restructured electricity markets. Price forecasting is very important for online trading, e-commerce and power system operation. Forecasting the hourly locational marginal prices (LMP) in the electricity markets is a very important basis for the decision making in order to maximize the profits/benefits. The novel approach pro- posed in this paper for forecasting the electricity prices uses WLS technique and compares the results with the results obtained by using ANNs. To perform this price forecasting, the market knowledge is utilized to optimize the selection of input data for the electricity price forecasting tool. In this paper, price forecasting for Pennsylvania-New Jersey-Maryland (PJM) interconnec- tion is demonstrated using the ANNs and the proposed WLS technique. The data used for this price forecasting is obtained from the PJM website. The forecasting results obtained by both methods are compared, which shows the effectiveness of the proposed forecasting approach. From the simulation results, it can be observed that the accuracy of prediction has increased in both seasons using the proposed WLS technique. Another important advantage of the proposed WLS technique is that it is not an iterative method.展开更多
In this paper,the short-,medium-,and long-term effects of the COVID-19 pandemic on the Italian power system,particularly electricity consumption behavior and electricity market prices,are investigated by defining vari...In this paper,the short-,medium-,and long-term effects of the COVID-19 pandemic on the Italian power system,particularly electricity consumption behavior and electricity market prices,are investigated by defining various metrics.The investigation reveals that COVID-19 lockdown caused a drop in load consumption and,consequently,a decrement in day-ahead market prices and an increase in ancillary service prices.展开更多
The large-scale integration of renewable energy sources (RESs) brings huge challenges to the power system. A cost-effective reserve deployment and uncertainty pricing mechanism are critical to deal with the uncertaint...The large-scale integration of renewable energy sources (RESs) brings huge challenges to the power system. A cost-effective reserve deployment and uncertainty pricing mechanism are critical to deal with the uncertainty and variability of RES. To this end, this paper proposes a novel locational marginal pricing mechanism in day-ahead market for managing uncertainties from RES. Firstly, an improved multi-ellipsoidal uncertainty set (IMEUS) considering the temporal correlation and conditional correlation of wind power forecasting is formulated to better capture the uncertainty of wind power. The dimension of each ellipsoidal subset is optimized based on a comprehensive evaluation index to reduce the invalid region without large loss of modeling accuracy, so as to reduce the conservatism. Then, an IMEUS-based robust unit commitment (RUC) model and a robust economic dispatch (RED) model are established for the day-ahead market clearing. Both the reserve cost and ramping constraints are considered in the overall dispatch process. Furthermore, based on the Langrangian function of the RED model, a new locational marginal pricing mechanism is developed. The uncertainty locational marginal price (ULMP) is introduced to charge the RES for its uncertainties and reward the generators who provide reserve to mitigate uncertainties. The new pricing mechanism can provide effective price signals to incentivize the uncertainty management in the day-ahead market. Finally, the effectiveness of the proposed mechanism is verified via numerous simulations on the PJM 5-bus system and IEEE 118-bus system.展开更多
基金This work was supported in part by the US Department of Energy(DOE),Office of Electricity and Office of Energy Efficiency and Renewable Energy under contract DE-AC05-00OR22725in part by CURENT,an Engineering Research Center funded by US National Science Foundation(NSF)and DOE under NSF award EEC-1041877in part by NSF award ECCS-1809458.
文摘In this paper,a day-ahead electricity market bidding problem with multiple strategic generation company(GEN-CO)bidders is studied.The problem is formulated as a Markov game model,where GENCO bidders interact with each other to develop their optimal day-ahead bidding strategies.Considering unobservable information in the problem,a model-free and data-driven approach,known as multi-agent deep deterministic policy gradient(MADDPG),is applied for approximating the Nash equilibrium(NE)in the above Markov game.The MAD-DPG algorithm has the advantage of generalization due to the automatic feature extraction ability of the deep neural networks.The algorithm is tested on an IEEE 30-bus system with three competitive GENCO bidders in both an uncongested case and a congested case.Comparisons with a truthful bidding strategy and state-of-the-art deep reinforcement learning methods including deep Q network and deep deterministic policy gradient(DDPG)demonstrate that the applied MADDPG algorithm can find a superior bidding strategy for all the market participants with increased profit gains.In addition,the comparison with a conventional-model-based method shows that the MADDPG algorithm has higher computational efficiency,which is feasible for real-world applications.
文摘This paper addresses two issues that concern the electricity market participants under the European day-ahead market(DAM)framework,namely the feasibility of the attained schedules and the non-confiscation of cleared volumes.To address the first issue,new resource-specific orders,i.e.,thermal orders for thermal generating units,demand response orders for load responsive resources,and energy limited orders for storage resources,are proposed and incorporated in the existing European DAM clearing problem.To address the second issue,two approaches which lead to a non-confiscatory market are analyzed:①discriminatory pricing with side-payments(U.S.paradigm);and②non-discriminatory pricing excluding out-ofmoney orders(European paradigm).A comparison is performed between the two approaches to investigate the most appropriate pricing rule in terms of social welfare,derived revenues for the sellers,and efficiency of the attained results.The proposed model with new resource-specific products is evaluated in a European test system,achieving robust solutions.The feasibility of the attained schedules is demonstrated when using resource-specific orders compared with block orders.Finally,the results indicate the supremacy of discriminatory pricing with side-payments compared with the current European pricing rule.
基金jointly supported by the National Key R&D Program of China(No.2018YFB0905200)State Grid Henan Economic Research Institute(No.52170018000S)。
文摘Being capable of aggregating multiple energy resources, the energy service company(ESCO) has been regarded as a promising alternative for improving power system flexibility and facilitating the consumption of renewable resources in the electricity market. Considering the uncertain variables in day-ahead(DA) market trading, an ESCO can hardly determine their accurate probability distribution functions. Traditional interval optimization methods are used to process these uncertain variables without specific probability distribution functions.However, the lower and upper bounds of the intervals may change due to extreme weather conditions and other emergent events. Hence, a dual interval optimization based trading strategy(DIOTS) for ESCO in a DA market with bilateral contracts(BCs) is proposed. First, we transfer the dual interval optimization model into a simple model consisting of several interval optimization models. Then, a pessimistic preference ordering method is applied to solve the derived model. Case studies illustrating an actual test system corroborate the validity and the robustness of the proposed model, and also reveal that ECSO is critical in improving power system flexibility and facilitating the ability of absorbing renewable resources.
文摘为实现我国电力资源大范围优化配置,打破省间电力市场交易壁垒,强调电力商品的经济性。文章在借鉴欧洲区域价格耦合项目(Price Coupling of Regions,PCR)成功经验的基础上,试图建立适用于我国省间电力统一市场的联合优化出清模型。文章旨在为建立适用于我国电力市场模式以及建成一个可以成熟运行的现货市场提供科学借鉴。
文摘This paper proposes the day-ahead electricity price forecasting using the artificial neural networks (ANN) and weighted least square (WLS) technique in the restructured electricity markets. Price forecasting is very important for online trading, e-commerce and power system operation. Forecasting the hourly locational marginal prices (LMP) in the electricity markets is a very important basis for the decision making in order to maximize the profits/benefits. The novel approach pro- posed in this paper for forecasting the electricity prices uses WLS technique and compares the results with the results obtained by using ANNs. To perform this price forecasting, the market knowledge is utilized to optimize the selection of input data for the electricity price forecasting tool. In this paper, price forecasting for Pennsylvania-New Jersey-Maryland (PJM) interconnec- tion is demonstrated using the ANNs and the proposed WLS technique. The data used for this price forecasting is obtained from the PJM website. The forecasting results obtained by both methods are compared, which shows the effectiveness of the proposed forecasting approach. From the simulation results, it can be observed that the accuracy of prediction has increased in both seasons using the proposed WLS technique. Another important advantage of the proposed WLS technique is that it is not an iterative method.
文摘In this paper,the short-,medium-,and long-term effects of the COVID-19 pandemic on the Italian power system,particularly electricity consumption behavior and electricity market prices,are investigated by defining various metrics.The investigation reveals that COVID-19 lockdown caused a drop in load consumption and,consequently,a decrement in day-ahead market prices and an increase in ancillary service prices.
基金This work was supported in part by the National Key R&D Program of Chi‐na(No.2020YFE0200400)the National Nature Science Foundation of Chi‐na(No.51907140).
文摘The large-scale integration of renewable energy sources (RESs) brings huge challenges to the power system. A cost-effective reserve deployment and uncertainty pricing mechanism are critical to deal with the uncertainty and variability of RES. To this end, this paper proposes a novel locational marginal pricing mechanism in day-ahead market for managing uncertainties from RES. Firstly, an improved multi-ellipsoidal uncertainty set (IMEUS) considering the temporal correlation and conditional correlation of wind power forecasting is formulated to better capture the uncertainty of wind power. The dimension of each ellipsoidal subset is optimized based on a comprehensive evaluation index to reduce the invalid region without large loss of modeling accuracy, so as to reduce the conservatism. Then, an IMEUS-based robust unit commitment (RUC) model and a robust economic dispatch (RED) model are established for the day-ahead market clearing. Both the reserve cost and ramping constraints are considered in the overall dispatch process. Furthermore, based on the Langrangian function of the RED model, a new locational marginal pricing mechanism is developed. The uncertainty locational marginal price (ULMP) is introduced to charge the RES for its uncertainties and reward the generators who provide reserve to mitigate uncertainties. The new pricing mechanism can provide effective price signals to incentivize the uncertainty management in the day-ahead market. Finally, the effectiveness of the proposed mechanism is verified via numerous simulations on the PJM 5-bus system and IEEE 118-bus system.