Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from bo...Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB.展开更多
Carbon nitride films were deposited on Si (100) substrates using plasma-enhanced chemical vapor deposition (PECVD) technique from CH4 and N2 at different applied dc bias voltage. The microstructure, composition and ch...Carbon nitride films were deposited on Si (100) substrates using plasma-enhanced chemical vapor deposition (PECVD) technique from CH4 and N2 at different applied dc bias voltage. The microstructure, composition and chemical bonding of the resulting films were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The mechanical properties such as hardness and elastic modulus of the films were evaluated using nano-indentation. As the results, the Raman spectra, showing the G and D bands, indicate the amorphous structure of the films. XPS and FTIR measurements demonstrate the existence of various carbon-nitride bonds in the films and the hydrogenation of carbon nitride phase. The composition ratio of N to C, the nano-hardness and the elastic modulus of the carbon nitride films increase with increasing dc bias voltage and reach the maximums at a dc bias voltage of 300 V, then they decrease with further increase of the dc bias voltage. Moreover, the XRD analyses indicate that the carbon nitride film contains some polycrystalline C3N4 phase embedded in the amorphous matrix at optimized deposition condition of dc bias voltage of 300 V.展开更多
IEC TS 60076-23,the first IEC standard on DC bias suppression devices approved by IEC/TC 14 in November 2017,is expected to be published and put into force in 2018,overcoming the lack of such IEC standards in the fiel...IEC TS 60076-23,the first IEC standard on DC bias suppression devices approved by IEC/TC 14 in November 2017,is expected to be published and put into force in 2018,overcoming the lack of such IEC standards in the field.The Shanghai branch of SGCC has carried out studies and researches on DC bias effect for more than 10 years,and it has led the standard development based on its R&D and the application of DC bias suppression devices in China.展开更多
To clarify the electromagnetic,vibration,and loss characteristics of the internal components of a converter transformer under DC bias conditions and their influencing mechanisms,a series of studies are conducted using...To clarify the electromagnetic,vibration,and loss characteristics of the internal components of a converter transformer under DC bias conditions and their influencing mechanisms,a series of studies are conducted using the finite element method and model experiments.This paper quantifies the influence of different DC contents on the magnetic flux density,force,and displacement distribution characteristics of the iron core and winding and analyzes the internal relationship between various indicators.The inflection point of the DC bias coefficient on the vibration is obtained and the contribution mechanism of the different responses of the iron core and winding to this inflection point is explained.The value of the DC bias coefficient for changing the main vibration frequency is determined.When the DC bias coefficient is 1.0 and 1.5,the main frequency of vibration moves to the right to 250 Hz and 350 Hz.Based on the principle of similarity,a DC bias vibration experimental platform for converter transformers is developed,and DC bias magnetic experiments are conducted to verify the reliability of the simulation results.展开更多
The longitudinal piezoelectric response of[001]poled rhombohedral and orthorhombic Pb(In_(1/2)Nb_(1/2))O_(3)-Pb(Mg_(1/3)Nb_(2/3))O_(3)-PbTiO_(3)crystals were investigated with respect to DC bias electric field,being i...The longitudinal piezoelectric response of[001]poled rhombohedral and orthorhombic Pb(In_(1/2)Nb_(1/2))O_(3)-Pb(Mg_(1/3)Nb_(2/3))O_(3)-PbTiO_(3)crystals were investigated with respect to DC bias electric field,being in the range of-2-15 kV/cm.For rhombohedral crystals with compo-sitions far away from morphotropic phase boundary(MPB),the piezoelectric response generally decreased with increasing positive DC bias field,while for crystals with MPB compositions,the piezoelectric response firstly decreased and then increased as function of DC bias.The piezo-electric response was found to decrease drastically when DC bias larger than phase transition feld.On the other hand,the piezoelectric response was slightly enhanced for all the crystals as function of negative DC bias prior to the depolarization.To explain the obtained results,the field dependent piezoelectric cofficients in domain engineered crystals were analyzed based on ther-modynamic approach.展开更多
Effect of direct current negative bias on diamond nucleation in microwave plasma assisted chemical vapor deposition system was discussed. The influence of the magnitude of negative bias value,bias duration and methane...Effect of direct current negative bias on diamond nucleation in microwave plasma assisted chemical vapor deposition system was discussed. The influence of the magnitude of negative bias value,bias duration and methane concentration in the gas mixture on nucleation density of diamond films was studied respectively. It is demonstrated that direct current negative bias can drastically enhance the diamond nucleation at a suitable value.Long bias duration and high methane concentration are helpful for diamond nucleation.展开更多
A theoretical model was proposed to describe the effects of external bias electric field on terahertz(THz)generated in air plasma.The model predicted that for a plasma in a bias electric field,the amplification effect...A theoretical model was proposed to describe the effects of external bias electric field on terahertz(THz)generated in air plasma.The model predicted that for a plasma in a bias electric field,the amplification effect of the THz wave intensity increases with the increase of the excitation laser wavelength.We experimentally observed the relationship between the THz enhancement effect and the electric field strength at different wavelengths.Experimental results showed a good agreement with the model predictions.These results enhance our understanding of the physical mechanism by which femtosecond lasers excite air to generate THz and extend the practical applications of THz generation and modulation.展开更多
DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researche...DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researched. The AC-DC interconnected large-scale system model under the monopole operation mode was established. The earth surface potential and DC current distribution in various stations under the different surface thickness was calculated. Some useful conclusions are drawn from the analyzed results.展开更多
HVDC transmission system has considerable impact on the surrounding power transformers when the system is running in the unipolar ground mode, which will cause the DC magnetic biasing phenomenon on transformers. This ...HVDC transmission system has considerable impact on the surrounding power transformers when the system is running in the unipolar ground mode, which will cause the DC magnetic biasing phenomenon on transformers. This problem would be more serious, after commission and operation of UHVDC transmission system in China. According to the Guangdong power grid under the influence of DC magnetic bias seriously, but little research about the using of blocking device, this paper proposed an optimization scheme about the usage of blocking device combination. Firstly, the subject studied the method of suppressing transformer neutral point DC depending on analysis the mechanism of magnetic biasing, and then found out the changes of power grid after using the capacitance blocking device which is popular used by Guangdong power grid. The particle swarm optimization (PSO) has been used to find a better way to suppress the DC in power grid, and combined with NSGA to solve the mixed integer programming problem. The final data validation of this method is valuable in engineering application.展开更多
With the increasing demand for high torque density in motors,more and more new topologies emerge.Furthermore,the magnetic field modulation principle is widely concerned and has evolved into an effective analysis metho...With the increasing demand for high torque density in motors,more and more new topologies emerge.Furthermore,the magnetic field modulation principle is widely concerned and has evolved into an effective analysis method for studying the new motor topology.This paper introduces the principle of magnetic field modulation.And the research on high torque density in recent years is reviewed from the perspective of magnetic field modulation,including permanent magnet vernier machine(PMVM),flux reverse machine(FRM),flux switching machine(FSM),dual permanent magnet(DPM)machine,and DC biased machine.The principle of magnetic field modulation makes it possible to propose higher torque density topologies in the future.展开更多
随着电力负荷快速增长,电力系统的故障电流水平持续上升,甚至超出了现有断路器的开断能力;为有效限制故障电流,超导故障限流器(superconducting fault current limiter,SFCL)逐渐投入应用。SFCL在正常运行时呈现零阻抗,故障发生后迅速...随着电力负荷快速增长,电力系统的故障电流水平持续上升,甚至超出了现有断路器的开断能力;为有效限制故障电流,超导故障限流器(superconducting fault current limiter,SFCL)逐渐投入应用。SFCL在正常运行时呈现零阻抗,故障发生后迅速转为高阻抗,可作为配合断路器开断的理想选择,提高电力系统的运行安全性。介绍了一种磁偏置型超导故障限流器(magneto-biased superconducting fault current limiter,MBSFCL),提出了考虑短路电流非周期分量影响的MBSFCL设计方法,对于MBSFCL的制造具有一定的指导意义。通过搭建仿真模型,验证了所提出方法的可行性,并对MBSFCL的限流特性进行了深入分析,讨论了不同非周期分量对断路器的开断影响,以及MBSFCL中电感、电阻参数变化对短路电流及其分量的限流效果影响。分析结果表明,在所提出MBSFCL设计方法中必须考虑非周期分量,且MBSFCL的电阻参数变化对短路电流的抑制效果更为显著。展开更多
基金supported by the Key R&D Program of Shandong Province(2021CXGC010210).
文摘Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB.
基金Projects(59925513 50323007) supported by the National Natural Science Foundation of China+2 种基金 project(G1999065005) supported by the National Basic Research Program of China project(2003AA305670) supported by the Hi-tech Research and Development Program of China and supported by "Top Hundred Talents Program" of Chinese Academy of Sciences
文摘Carbon nitride films were deposited on Si (100) substrates using plasma-enhanced chemical vapor deposition (PECVD) technique from CH4 and N2 at different applied dc bias voltage. The microstructure, composition and chemical bonding of the resulting films were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The mechanical properties such as hardness and elastic modulus of the films were evaluated using nano-indentation. As the results, the Raman spectra, showing the G and D bands, indicate the amorphous structure of the films. XPS and FTIR measurements demonstrate the existence of various carbon-nitride bonds in the films and the hydrogenation of carbon nitride phase. The composition ratio of N to C, the nano-hardness and the elastic modulus of the carbon nitride films increase with increasing dc bias voltage and reach the maximums at a dc bias voltage of 300 V, then they decrease with further increase of the dc bias voltage. Moreover, the XRD analyses indicate that the carbon nitride film contains some polycrystalline C3N4 phase embedded in the amorphous matrix at optimized deposition condition of dc bias voltage of 300 V.
文摘IEC TS 60076-23,the first IEC standard on DC bias suppression devices approved by IEC/TC 14 in November 2017,is expected to be published and put into force in 2018,overcoming the lack of such IEC standards in the field.The Shanghai branch of SGCC has carried out studies and researches on DC bias effect for more than 10 years,and it has led the standard development based on its R&D and the application of DC bias suppression devices in China.
基金supported by the Key R&D Program of Shandong Province(No.2021CXGC010210).
文摘To clarify the electromagnetic,vibration,and loss characteristics of the internal components of a converter transformer under DC bias conditions and their influencing mechanisms,a series of studies are conducted using the finite element method and model experiments.This paper quantifies the influence of different DC contents on the magnetic flux density,force,and displacement distribution characteristics of the iron core and winding and analyzes the internal relationship between various indicators.The inflection point of the DC bias coefficient on the vibration is obtained and the contribution mechanism of the different responses of the iron core and winding to this inflection point is explained.The value of the DC bias coefficient for changing the main vibration frequency is determined.When the DC bias coefficient is 1.0 and 1.5,the main frequency of vibration moves to the right to 250 Hz and 350 Hz.Based on the principle of similarity,a DC bias vibration experimental platform for converter transformers is developed,and DC bias magnetic experiments are conducted to verify the reliability of the simulation results.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2009CB623306International Science and Technology Cooperation Program of China under Grant No.2010DFR50480National Nature Science Foundation of China(Grant Nos.10976022 and 50632030).
文摘The longitudinal piezoelectric response of[001]poled rhombohedral and orthorhombic Pb(In_(1/2)Nb_(1/2))O_(3)-Pb(Mg_(1/3)Nb_(2/3))O_(3)-PbTiO_(3)crystals were investigated with respect to DC bias electric field,being in the range of-2-15 kV/cm.For rhombohedral crystals with compo-sitions far away from morphotropic phase boundary(MPB),the piezoelectric response generally decreased with increasing positive DC bias field,while for crystals with MPB compositions,the piezoelectric response firstly decreased and then increased as function of DC bias.The piezo-electric response was found to decrease drastically when DC bias larger than phase transition feld.On the other hand,the piezoelectric response was slightly enhanced for all the crystals as function of negative DC bias prior to the depolarization.To explain the obtained results,the field dependent piezoelectric cofficients in domain engineered crystals were analyzed based on ther-modynamic approach.
文摘Effect of direct current negative bias on diamond nucleation in microwave plasma assisted chemical vapor deposition system was discussed. The influence of the magnitude of negative bias value,bias duration and methane concentration in the gas mixture on nucleation density of diamond films was studied respectively. It is demonstrated that direct current negative bias can drastically enhance the diamond nucleation at a suitable value.Long bias duration and high methane concentration are helpful for diamond nucleation.
基金Natural Science Foundation of Beijing,China(Grant No.JQ18015),the National Natural Science Foundation of China(Grant Nos.61935001 and 61905271).
文摘A theoretical model was proposed to describe the effects of external bias electric field on terahertz(THz)generated in air plasma.The model predicted that for a plasma in a bias electric field,the amplification effect of the THz wave intensity increases with the increase of the excitation laser wavelength.We experimentally observed the relationship between the THz enhancement effect and the electric field strength at different wavelengths.Experimental results showed a good agreement with the model predictions.These results enhance our understanding of the physical mechanism by which femtosecond lasers excite air to generate THz and extend the practical applications of THz generation and modulation.
文摘DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researched. The AC-DC interconnected large-scale system model under the monopole operation mode was established. The earth surface potential and DC current distribution in various stations under the different surface thickness was calculated. Some useful conclusions are drawn from the analyzed results.
文摘HVDC transmission system has considerable impact on the surrounding power transformers when the system is running in the unipolar ground mode, which will cause the DC magnetic biasing phenomenon on transformers. This problem would be more serious, after commission and operation of UHVDC transmission system in China. According to the Guangdong power grid under the influence of DC magnetic bias seriously, but little research about the using of blocking device, this paper proposed an optimization scheme about the usage of blocking device combination. Firstly, the subject studied the method of suppressing transformer neutral point DC depending on analysis the mechanism of magnetic biasing, and then found out the changes of power grid after using the capacitance blocking device which is popular used by Guangdong power grid. The particle swarm optimization (PSO) has been used to find a better way to suppress the DC in power grid, and combined with NSGA to solve the mixed integer programming problem. The final data validation of this method is valuable in engineering application.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Project No.51737010the National Key R&D Program of China under Grant 2020YFA0710500。
文摘With the increasing demand for high torque density in motors,more and more new topologies emerge.Furthermore,the magnetic field modulation principle is widely concerned and has evolved into an effective analysis method for studying the new motor topology.This paper introduces the principle of magnetic field modulation.And the research on high torque density in recent years is reviewed from the perspective of magnetic field modulation,including permanent magnet vernier machine(PMVM),flux reverse machine(FRM),flux switching machine(FSM),dual permanent magnet(DPM)machine,and DC biased machine.The principle of magnetic field modulation makes it possible to propose higher torque density topologies in the future.
文摘随着电力负荷快速增长,电力系统的故障电流水平持续上升,甚至超出了现有断路器的开断能力;为有效限制故障电流,超导故障限流器(superconducting fault current limiter,SFCL)逐渐投入应用。SFCL在正常运行时呈现零阻抗,故障发生后迅速转为高阻抗,可作为配合断路器开断的理想选择,提高电力系统的运行安全性。介绍了一种磁偏置型超导故障限流器(magneto-biased superconducting fault current limiter,MBSFCL),提出了考虑短路电流非周期分量影响的MBSFCL设计方法,对于MBSFCL的制造具有一定的指导意义。通过搭建仿真模型,验证了所提出方法的可行性,并对MBSFCL的限流特性进行了深入分析,讨论了不同非周期分量对断路器的开断影响,以及MBSFCL中电感、电阻参数变化对短路电流及其分量的限流效果影响。分析结果表明,在所提出MBSFCL设计方法中必须考虑非周期分量,且MBSFCL的电阻参数变化对短路电流的抑制效果更为显著。