The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the ...The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the bypass ratio and the scarf angle on the mixing performance for the scarfed lobed mixer. Results show that the scarfed lobed mixer is reduced in the system weight. Meanwhile, aerodynamic performances are slightly improved compared with the normal lobed mixer. Two reasons for causing the mixing enhancement between the core and the bypass flow are as follows: (1) The stream-wise vortices shed from the training edge of the half/full scarfed lobed mixer earlier is enhanced by about 25%. (2) The mixing augmentation is also associated with the increase of the interface length caused by scarfing. The thermal mixing efficiency is enhanced with the increase of the bypass ratio and the scarfing angle. The scarfed lobed mixer design has no negative effects on the pressure loss. The total pressure recovery coefficient reaches above 0. 935 in various bypass ratios and scarfed angles. As the bypass ratio increases, the total pressure recovery coefficient also increases for the scarfed lobed mixer.展开更多
Three-dimensional numerical computation of the flow fields and pumping performances for the lobed mixer-ejector are conducted using full Navier-Stokes equations. In the computation, the inlet of the primary flow uses ...Three-dimensional numerical computation of the flow fields and pumping performances for the lobed mixer-ejector are conducted using full Navier-Stokes equations. In the computation, the inlet of the primary flow uses the mass flowrate boundary condition. The inlet of the second flow and the outlet of the mixing flow use the pressure boundary condition. Compared with the relative experimental resuits, it is shown that the present calculation is reasonable. And a series of numerical studies is performed to obtain the effects of area ratio and length-to-diameter ratio of mixing duct on pumping coefficient and thermal mixing efficiency of a lobed mixer-ejector.展开更多
An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle.A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vortic...An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle.A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vorticity distributions to revealed both the large-scale streamwise vortices produced by the lobed mixer/nozzle and the Kelvin-Helmholtz vortex structures generated due to the Kelvin-Helmholtz instabilities simultaneously and quantitatively for the first time.The instantaneous and the ensemble-averaged vorticity distributions displayed quite different aspects about the evolutions of the unsteady vortex structures.While the ensemble-averaged vorticity distributions indicated the overall effect of the special geometry of the lobed nozzle/mixer on the enhanced mixing process,the instantaneous vorticity distributions elucidated many details about how the enhanced mixing process was conducted.In addition to quantitatively confirming conjectures of previous studies,further insight about the formation,evolution and interaction characteristics of the unsteady vortex structures downstream of the lobed mixer/nozzle were also uncovered quantitatively in the present study.展开更多
The air-turbo-rocket(ATR)engine is a promising propulsion plant for achieving numerous surface and air launched missile missions.The application of lobed mixer in the ATR combustor can promote the mixing of the fuelri...The air-turbo-rocket(ATR)engine is a promising propulsion plant for achieving numerous surface and air launched missile missions.The application of lobed mixer in the ATR combustor can promote the mixing of the fuelrich gas and the air,thus improving the engine performance significantly.The numerical simulation method was conducted to explore the effects of lobe peak-to-trough width ratio on mixing and combustion performance in ATR combustors.Results show that:For a given peak lobe width b1,the combustion efficiency and total pressure loss decrease with the increase of trough lobe width b2;For a given b2,the combustion efficiency and total pressure loss decrease with the increase of b1;The fan-type lobed mixer with smaller b2has a better effect on promoting the combustion efficiency in the region near the ATR combustor center line than that with a pair of parallel side walls.The total pressure recovery coefficient reaches more than 0.99 at the exit of combustor in nonreactive combustion while the total pressure loss reaches more than 4%in the reacting combustion.Compared with the mixing process,more than80%of the total pressure loss is caused during combustion.展开更多
A Sequential Approximate Optimization framework(SAO)for the multi-objective optimization of lobed mixer is established by using the BP neural network and Genetic Algorithm:the ratio of lobe wavelength to height(η)and...A Sequential Approximate Optimization framework(SAO)for the multi-objective optimization of lobed mixer is established by using the BP neural network and Genetic Algorithm:the ratio of lobe wavelength to height(η)and the rise angle(α)are selected as the design parameters,and the mixing efficiency,thrust and total pressure loss are the optimization objectives.The CFX commercial solver coupled with the SST turbulence model is employed to simulate the flow field of lobed mixer.A tetrahedral unstructured grid with 5.6 million cells can achieve the similar global results.Based on the response surface approximation model of the lobed mixer,it is necessary to avoid increasing or decreasingαandηat the same time.Instead,theαshould be reduced while theηis appropriately increased,which is conducive to achieving the goal of increasing thrust and reducing losses at the expense of a small decrease in the mixing efficiency.Compared with the normalized method,the non-normalized method with better global optimization accuracy is more suitable for solving the multi-objective optimization problem of the lobed mixer,and its optimal solution(α=8.54°,η=1.165)is the optimal solution of the lobed mixer optimization problem studied in this paper.Compared with the reference lobed mixer,theα,β(the fall angle)and H(lobe height)of the optimal solution are reduced by 0.14°,1.34°and 3.97 mm,respectively,and theηis increased by 0.074;its mixing efficiency is decreased by 4.46%,but the thrust is increased by 2.29%and the total pressure loss is decreased by 0.64%.Downstream of the optimized lobed mixer,the radial scale and peak vorticity of the streamwise voritices decrease with the decreasing lobe height,thereby reducing the mixing efficiency.For the optimized lobed mixer,its low mixing efficiency is the main factor for the decrease of the total pressure loss,but the improvement of the geometric curvature is also conducive to reducing its profile loss.Within the scope of this study,the lobed mixer has an optimal mixing efficiency(ε=74.14%)that maximizes its thrust without excessively increasing the mixing loss.展开更多
The flow-field of a fuel/air mixing system with an axisymmetric lobed mixer was numerically investigated. Large-scale streamwise vortices are formed immediately downstream of the mixer trailing edge, stretched further...The flow-field of a fuel/air mixing system with an axisymmetric lobed mixer was numerically investigated. Large-scale streamwise vortices are formed immediately downstream of the mixer trailing edge, stretched further downstream, and finally broken into fragments where more intense mixing occurs. Both numerical and experimental results indicate that the length required for streamwise vortices breakdown in the confined flow-field of an axisymmetric lobed mixer is much shorter than that in the case of planar lobed mixers subject to parallel freestreams. For the conditions studied, the streamwise vortices start to breakdown at three wavelengths downstream of the mixer trailing edge.展开更多
Full Navier-Stokes Analyses have been conducted for the flows behind the trailing edge of a lobed forced mixer. The governing equations are derived from the timedependent compressible Navier-Stokes equa tions and disc...Full Navier-Stokes Analyses have been conducted for the flows behind the trailing edge of a lobed forced mixer. The governing equations are derived from the timedependent compressible Navier-Stokes equa tions and discretized in the finite-difference form. A simple two-layer eddy viscosity model has also been used to account for the turbulence. Computed results are compared with some of the velocity measurements using a laserDoppler anemometer (Yu and Yip (1997)). In general, good agreement can be obtained in the streamwise mean velocity distribution but the decay of the streamwise circulation is underpredicted. Some suggestions to the discrepancy are proposed.展开更多
基金Supported by the Civil Aviation Research Foundation of Nanjing University of Aeronautics and Astronautics~~
文摘The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the bypass ratio and the scarf angle on the mixing performance for the scarfed lobed mixer. Results show that the scarfed lobed mixer is reduced in the system weight. Meanwhile, aerodynamic performances are slightly improved compared with the normal lobed mixer. Two reasons for causing the mixing enhancement between the core and the bypass flow are as follows: (1) The stream-wise vortices shed from the training edge of the half/full scarfed lobed mixer earlier is enhanced by about 25%. (2) The mixing augmentation is also associated with the increase of the interface length caused by scarfing. The thermal mixing efficiency is enhanced with the increase of the bypass ratio and the scarfing angle. The scarfed lobed mixer design has no negative effects on the pressure loss. The total pressure recovery coefficient reaches above 0. 935 in various bypass ratios and scarfed angles. As the bypass ratio increases, the total pressure recovery coefficient also increases for the scarfed lobed mixer.
文摘Three-dimensional numerical computation of the flow fields and pumping performances for the lobed mixer-ejector are conducted using full Navier-Stokes equations. In the computation, the inlet of the primary flow uses the mass flowrate boundary condition. The inlet of the second flow and the outlet of the mixing flow use the pressure boundary condition. Compared with the relative experimental resuits, it is shown that the present calculation is reasonable. And a series of numerical studies is performed to obtain the effects of area ratio and length-to-diameter ratio of mixing duct on pumping coefficient and thermal mixing efficiency of a lobed mixer-ejector.
文摘An experimental study was conducted to investigate the evolutions of unsteady vortex structures downstream a lobed mixer/nozzle.A novel dual-plane stereoscopic PIV system was used to measure all 3-components of vorticity distributions to revealed both the large-scale streamwise vortices produced by the lobed mixer/nozzle and the Kelvin-Helmholtz vortex structures generated due to the Kelvin-Helmholtz instabilities simultaneously and quantitatively for the first time.The instantaneous and the ensemble-averaged vorticity distributions displayed quite different aspects about the evolutions of the unsteady vortex structures.While the ensemble-averaged vorticity distributions indicated the overall effect of the special geometry of the lobed nozzle/mixer on the enhanced mixing process,the instantaneous vorticity distributions elucidated many details about how the enhanced mixing process was conducted.In addition to quantitatively confirming conjectures of previous studies,further insight about the formation,evolution and interaction characteristics of the unsteady vortex structures downstream of the lobed mixer/nozzle were also uncovered quantitatively in the present study.
基金supported by the National Science and Technology Major Project(No.J2019-Ⅲ-0001-0044)。
文摘The air-turbo-rocket(ATR)engine is a promising propulsion plant for achieving numerous surface and air launched missile missions.The application of lobed mixer in the ATR combustor can promote the mixing of the fuelrich gas and the air,thus improving the engine performance significantly.The numerical simulation method was conducted to explore the effects of lobe peak-to-trough width ratio on mixing and combustion performance in ATR combustors.Results show that:For a given peak lobe width b1,the combustion efficiency and total pressure loss decrease with the increase of trough lobe width b2;For a given b2,the combustion efficiency and total pressure loss decrease with the increase of b1;The fan-type lobed mixer with smaller b2has a better effect on promoting the combustion efficiency in the region near the ATR combustor center line than that with a pair of parallel side walls.The total pressure recovery coefficient reaches more than 0.99 at the exit of combustor in nonreactive combustion while the total pressure loss reaches more than 4%in the reacting combustion.Compared with the mixing process,more than80%of the total pressure loss is caused during combustion.
基金funded by the National Science and Technology Major Project(Grant No.J2019-II-0007-0027)。
文摘A Sequential Approximate Optimization framework(SAO)for the multi-objective optimization of lobed mixer is established by using the BP neural network and Genetic Algorithm:the ratio of lobe wavelength to height(η)and the rise angle(α)are selected as the design parameters,and the mixing efficiency,thrust and total pressure loss are the optimization objectives.The CFX commercial solver coupled with the SST turbulence model is employed to simulate the flow field of lobed mixer.A tetrahedral unstructured grid with 5.6 million cells can achieve the similar global results.Based on the response surface approximation model of the lobed mixer,it is necessary to avoid increasing or decreasingαandηat the same time.Instead,theαshould be reduced while theηis appropriately increased,which is conducive to achieving the goal of increasing thrust and reducing losses at the expense of a small decrease in the mixing efficiency.Compared with the normalized method,the non-normalized method with better global optimization accuracy is more suitable for solving the multi-objective optimization problem of the lobed mixer,and its optimal solution(α=8.54°,η=1.165)is the optimal solution of the lobed mixer optimization problem studied in this paper.Compared with the reference lobed mixer,theα,β(the fall angle)and H(lobe height)of the optimal solution are reduced by 0.14°,1.34°and 3.97 mm,respectively,and theηis increased by 0.074;its mixing efficiency is decreased by 4.46%,but the thrust is increased by 2.29%and the total pressure loss is decreased by 0.64%.Downstream of the optimized lobed mixer,the radial scale and peak vorticity of the streamwise voritices decrease with the decreasing lobe height,thereby reducing the mixing efficiency.For the optimized lobed mixer,its low mixing efficiency is the main factor for the decrease of the total pressure loss,but the improvement of the geometric curvature is also conducive to reducing its profile loss.Within the scope of this study,the lobed mixer has an optimal mixing efficiency(ε=74.14%)that maximizes its thrust without excessively increasing the mixing loss.
文摘The flow-field of a fuel/air mixing system with an axisymmetric lobed mixer was numerically investigated. Large-scale streamwise vortices are formed immediately downstream of the mixer trailing edge, stretched further downstream, and finally broken into fragments where more intense mixing occurs. Both numerical and experimental results indicate that the length required for streamwise vortices breakdown in the confined flow-field of an axisymmetric lobed mixer is much shorter than that in the case of planar lobed mixers subject to parallel freestreams. For the conditions studied, the streamwise vortices start to breakdown at three wavelengths downstream of the mixer trailing edge.
文摘Full Navier-Stokes Analyses have been conducted for the flows behind the trailing edge of a lobed forced mixer. The governing equations are derived from the timedependent compressible Navier-Stokes equa tions and discretized in the finite-difference form. A simple two-layer eddy viscosity model has also been used to account for the turbulence. Computed results are compared with some of the velocity measurements using a laserDoppler anemometer (Yu and Yip (1997)). In general, good agreement can be obtained in the streamwise mean velocity distribution but the decay of the streamwise circulation is underpredicted. Some suggestions to the discrepancy are proposed.