期刊文献+
共找到1,355篇文章
< 1 2 68 >
每页显示 20 50 100
A Study on English Humor in The Ellen DeGeneres Show from the Perspective of Cooperative Principle
1
作者 刘智颖 《新东方英语(中英文版)》 2019年第1期105-106,共2页
English humor is a popular way of communication. A pragmatic study of English humor should be based on naturally occurring humor to the greatest extent as far as possible,which makes the live talk show a best choice,a... English humor is a popular way of communication. A pragmatic study of English humor should be based on naturally occurring humor to the greatest extent as far as possible,which makes the live talk show a best choice,and the most popular of which is in America,namely The Ellen DeGeneres Show. From the perspective of the CP,this tentative study explores the generative mech-anism of verbal humor,hoping to provide some useful suggestions to better understand the generative mechanism of verbal humor and meaningful reference for the language users. 展开更多
关键词 ENGLISH HUMOR COOPERATIVE PRINCIPLE The ELLEN degeneres
下载PDF
Role of transforming growth factor-βin peripheral nerve regeneration 被引量:3
2
作者 Zihan Ding Maorong Jiang +4 位作者 Jiaxi Qian Dandan Gu Huiyuan Bai Min Cai Dengbing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期380-386,共7页
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to... Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications. 展开更多
关键词 MYELINATION nerve repair and regeneration NEURITE NEUROINFLAMMATION peripheral nerve injury Schwann cell transforming growth factor-β Wallerian degeneration
下载PDF
Neutrophil peptide 1 accelerates the clearance of degenerative axons during Wallerian degeneration by activating macrophages after peripheral nerve crush injury 被引量:2
3
作者 Yuhui Kou Yusong Yuan +3 位作者 Qicheng Li Wenyong Xie Hailin Xu Na Han 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1822-1827,共6页
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ... Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration. 展开更多
关键词 axonal debris inflammatory factors MACROPHAGES neutrophil peptide 1 peripheral nerve injury peripheral nerve regeneration RAW 264.7 cells sciatic nerve Wallerian degeneration
下载PDF
Using choroidal thickness to detect myopic macular degeneration 被引量:2
4
作者 Ran Liu Meng Xuan +10 位作者 De-Cai Wang Ou Xiao Xin-Xing Guo Jian Zhang Wei Wang Monica Jong Padmaja Sankaridurg Kyoko Ohno-Matsui Qiu-Xia Yin Ming-Guang He Zhi-Xi Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第2期317-323,共7页
AIM:To explore the usage of choroidal thickness measured by swept-source optical coherence tomography(SS-OCT)to detect myopic macular degeneration(MMD)in high myopic participants.METHODS:Participants with bilateral hi... AIM:To explore the usage of choroidal thickness measured by swept-source optical coherence tomography(SS-OCT)to detect myopic macular degeneration(MMD)in high myopic participants.METHODS:Participants with bilateral high myopia(≤−6 diopters)were recruited from a subset of the Guangzhou Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Cohort Study.SS-OCT was performed to determine the choroidal thickness,and myopic maculopathy was graded by the International Meta-Analysis for Pathologic Myopia(META-PM)Classification.Presence of MMD was defined as META-PM category 2 or above.RESULTS:A total of 568 right eyes were included for analysis.Eyes with MMD(n=106,18.7%)were found to have older age,longer axial lengths(AL),higher myopic spherical equivalents(SE),and reduced choroidal thickness in each Early Treatment Diabetic Retinopathy Study(ETDRS)grid sector(P<0.001).The area under the receiver operating characteristic(ROC)curves(AUC)for subfoveal choroidal thickness(0.907)was greater than that of the model,including age,AL,and SE at 0.6249,0.8208,and 0.8205,respectively.The choroidal thickness of the inner and outer nasal sectors was the most accurate indicator of MMD(AUC of 0.928 and 0.923,respectively).An outer nasal sector choroidal thickness of less than 74μm demonstrated the highest odds of predicting MMD(OR=33.8).CONCLUSION:Choroidal thickness detects the presence of MMD with high agreement,particularly of the inner and outer nasal sectors of the posterior pole,which appears to be a biometric parameter more precise than age,AL,or SE. 展开更多
关键词 high myopia choroidal thickness myopic macular degeneration swept-source optical coherence tomography
下载PDF
Taurine: a promising nutraceutic in the prevention of retinal degeneration 被引量:1
5
作者 Diego García-Ayuso Johnny Di Pierdomenico +3 位作者 Ana Martínez-Vacas Manuel Vidal-Sanz Serge Picaud María PVillegas-Pérez 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期606-610,共5页
Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenanc... Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenance,and function of certain tissues.Taurine may be especially important for the retina.The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress,apoptosis,and degeneration of photoreceptors and retinal ganglion cells.Low plasma taurine levels may also underlie retinal degeneration in humans and therefore,taurine administration could exert retinal neuroprotective effects.Taurine has antioxidant,anti-apoptotic,immunomodulatory,and calcium homeostasis-regulatory properties.This review summarizes the role of taurine in retinal health and disease,where it appears that taurine may be a promising nutraceutical. 展开更多
关键词 amino acid ANTI-INFLAMMATORY ANTIOXIDANT gamma-aminobutyric acid NUTRACEUTICAL photoreceptor degeneration RETINA retinitis pigmentosa TAURINE
下载PDF
Nuance of inward rectifying potassium(Kir)channel dysfunctions in neurodegenerative diseases 被引量:1
6
作者 Benjamin Garland Linlin Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1195-1196,共2页
Neurodegenerative disorders are highly prevalent and diverse in nature.Their manifestation largely depends on the cell types involved,with aberrant inflammatory episodes progressively inducing a constellation of pheno... Neurodegenerative disorders are highly prevalent and diverse in nature.Their manifestation largely depends on the cell types involved,with aberrant inflammatory episodes progressively inducing a constellation of phenotypes that are classified into specific diseases based on their neuropathological traits.The two most prevalent neurodegenerative diseases worldwide,Alzheimer’s disease(AD)and Parkinson’s disease(PD),for example,share notable similarities,yet they differ in terms of the specific cell types lost within the central nervous system(CNS).The significant and progressive loss of cortical and certain subcortical neurons in various regions is a major defining trait of AD.In contrast,the specific loss of dopaminergic neurons(DA)within the substantial nigra pars compacta(SNpc)is sufficient to cause motor symptoms associated with PD.Another devastating condition arising from neurodegeneration within the CNS,amyotrophic lateral sclerosis(ALS),results in the progressive death of upper and lower motor neurons.This degeneration originates in oligodendrocytes,whose defective myelination abilities lead to the denervation of the anterior horn,aggravating motor neuron death. 展开更多
关键词 diseases DEGENERATIVE DEGENERATION
下载PDF
Lumbar instability remodels cartilage endplate to induce intervertebral disc degeneration by recruiting osteoclasts via Hippo-CCL3 signaling 被引量:1
7
作者 Hanwen Li Yingchuang Tang +7 位作者 Zixiang Liu Kangwu Chen Kai Zhang Sihan Hu Chun Pan Huilin Yang Bin Li Hao Chen 《Bone Research》 SCIE CAS CSCD 2024年第3期555-570,共16页
Degenerated endplate appears with cheese-like morphology and sensory innervation,contributing to low back pain and subsequently inducing intervertebral disc degeneration in the aged population.1 However,the origin and... Degenerated endplate appears with cheese-like morphology and sensory innervation,contributing to low back pain and subsequently inducing intervertebral disc degeneration in the aged population.1 However,the origin and development mechanism of the cheese-like morphology remain unclear.Here in this study,we report lumbar instability induced cartilage endplate remodeling is responsible for this pathological change. 展开更多
关键词 DEGENERATION CARTILAGE INTERVERTEBRAL
下载PDF
A new perspective on intervertebral disc calcification—from bench to bedside 被引量:1
8
作者 Emanuel J.Novais Rajkishen Narayanan +5 位作者 Jose A.Canseco Koen van de Wetering Christopher K.Kepler Alan S.Hilibrand Alexander R.Vaccaro Makarand V.Risbud 《Bone Research》 SCIE CAS CSCD 2024年第1期50-61,共12页
Disc degeneration primarily contributes to chronic low back and neck pain.Consequently,there is an urgent need to understand the spectrum of disc degeneration phenotypes such as fibrosis,ectopic calcification,herniati... Disc degeneration primarily contributes to chronic low back and neck pain.Consequently,there is an urgent need to understand the spectrum of disc degeneration phenotypes such as fibrosis,ectopic calcification,herniation,or mixed phenotypes.Amongst these phenotypes,disc calcification is the least studied.Ectopic calcification,by definition,is the pathological mineralization of soft tissues,widely studied in the context of conditions that afflict vasculature,skin,and cartilage.Clinically,disc calcification is associated with poor surgical outcomes and back pain refractory to conservative treatment.It is frequently seen as a consequence of disc aging and progressive degeneration but exhibits unique molecular and morphological characteristics:hypertrophic chondrocyte-like cell differentiation;TNAP,ENPP1,and ANK upregulation;cell death;altered Pi and PPi homeostasis;and local inflammation.Recent studies in mouse models have provided a better understanding of the mechanisms underlying this phenotype.It is essential to recognize that the presentation and nature of mineralization differ between AF,NP,and EP compartments.Moreover,the combination of anatomic location,genetics,and environmental stressors,such as aging or trauma,govern the predisposition to calcification.Lastly,the systemic regulation of calcium and Pi metabolism is less important than the local activity of PPi modulated by the ANK-ENPP1 axis,along with disc cell death and differentiation status.While there is limited understanding of this phenotype,understanding the molecular pathways governing local intervertebral disc calcification may lead to developing disease-modifying drugs and better clinical management of degeneration-related pathologies. 展开更多
关键词 DEGENERATION metabolism INTERVERTEBRAL
下载PDF
Visualizing Wallerian degeneration in the corticospinal tract after sensorimotor cortex ischemia in mice 被引量:1
9
作者 Jiao Mu Liufang Hao +6 位作者 Zijue Wang Xuyang Fu Yusen Li Fei Hao Hongmei Duan Zhaoyang Yang Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期636-641,共6页
Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract f... Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke,we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract.We first used a routine,sensitive marker of axonal injury,amyloid precursor protein,to examine Wallerian degeneration of the corticospinal tract.An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex,with no positive signal in distal parts of the corticospinal tract,at all time points.To improve visualization of Wallerian degeneration,we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons.Using this approach,we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke.In addition,microglia mobilized and activated early,from day 7 after stroke,but did not maintain a phagocytic state over time.Meanwhile,astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration.Moreover,no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract.In conclusion,our data provide evidence for dynamic,pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration. 展开更多
关键词 corticospinal tract green fluorescent protein MICROGLIA spinal anterior horn cells stroke virus trace Wallerian degeneration
下载PDF
Lycium barbarum glycopeptide(wolfberry extract)slows N-methyl-N-nitrosourea-induced degradation of photoreceptors 被引量:1
10
作者 Qihang Kong Xiu Han +8 位作者 Haiyang Cheng Jiayu Liu Huijun Zhang Tangrong Dong Jiansu Chen Kwok-Fai So Xuesong Mi Ying Xu Shibo Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2290-2298,共9页
Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum(L. barbarum) polysaccharide(LBP) protects degenerated photo... Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum(L. barbarum) polysaccharide(LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide(Lb GP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of Lb GP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of Lb GP as a protective pre-treatment on days 1–7;intraperitoneal administration of 40 mg/kg N-methylN-nitrosourea to induce photoreceptor injury on day 7;and continuation of orally administered Lb GP on days 8–14. Treatment with Lb GP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. Lb GP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, Lb GP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration. 展开更多
关键词 anti-inflammation inherited retinal diseases Lycium barbarum glycopeptide N-METHYL-N-NITROSOUREA OPSIN photoreceptor reactive gliosis retinal degeneration retinitis pigmentosa RHODOPSIN
下载PDF
Morphological disruption and visual tuning alterations in the primary visual cortex in glaucoma(DBA/2J)mice 被引量:1
11
作者 Yin Yang Zhaoxi Yang +9 位作者 Maoxia Lv Ang Jia Junjun Li Baitao Liao Jing’an Chen Zhengzheng Wu Yi Shi Yang Xia Dezhong Yao Ke Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期220-225,共6页
Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the pr... Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the primary visual cortex(V1)is altered in glaucoma.This study used DBA/2J mice as a model for spontaneous secondary glaucoma.The aim of the study was to compare the electrophysiological and histomorphological chara cteristics of neurons in the V1between 9-month-old DBA/2J mice and age-matched C57BL/6J mice.We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses,including single-unit spiking and gamma band oscillations.The morphology of layerⅡ/Ⅲneurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections.Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined.Compared with the C57BL/6J group,V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation.Moreove r,fewer neuro ns were observed in the V1 of DBA/2J mice compared with C57BL/6J mice.These findings suggest that DBA/2J mice have fewer neurons in the VI compared with C57BL/6J mice,and that these neurons have impaired visual tuning.Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model.This study might offer some innovative perspectives regarding the treatment of glaucoma. 展开更多
关键词 DBA/2J DEGENERATION gamma band oscillations GLAUCOMA primary visual cortex(V1) RETINA single-unit recording tuning curve
下载PDF
Single-cell RNA sequencing analysis of the retina under acute high intraocular pressure
12
作者 Shaojun Wang Siti Tong +5 位作者 Xin Jin Na Li Pingxiu Dang Yang Sui Ying Liu Dajiang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2522-2531,共10页
High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat ... High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel(Healaflow■).Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure.Our results identified a total of 12 cell types,namely retinal pigment epithelial cells,rod-photoreceptor cells,bipolar cells,Müller cells,microglia,cone-photoreceptor cells,retinal ganglion cells,endothelial cells,retinal progenitor cells,oligodendrocytes,pericytes,and fibroblasts.The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells,with ganglion cells decreased by 23%.Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure.We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression.We found upregulation of the B3gat2 gene,which is associated with neuronal migration and adhesion,and downregulation of the Tsc22d gene,which participates in inhibition of inflammation.This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure.These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies. 展开更多
关键词 APOPTOSIS axon degeneration high intraocular pressure MICROGLIA ocular hypertension photoreceptor cells RETINA retinal degeneration retinal ganglion cells single-cell RNA sequencing
下载PDF
NLRP3 and autophagy in retinal ganglion cell inflammation in age-related macular degeneration:potential therapeutic implications
13
作者 Xiao-Li Wang Yun-Xia Gao +1 位作者 Qiong-Zhen Yuan Ming Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第8期1531-1544,共14页
Retinal degenerative diseases were a large group of diseases characterized by the primary death of retinal ganglion cells(RGCs).Recent studies had shown an interaction between autophagy and nucleotide-binding oligomer... Retinal degenerative diseases were a large group of diseases characterized by the primary death of retinal ganglion cells(RGCs).Recent studies had shown an interaction between autophagy and nucleotide-binding oligomerization domain-like receptor 3(NLRP3)inflammasomes,which may affect RGCs in retinal degenerative diseases.The NLRP3 inflammasome was a protein complex that,upon activation,produces caspase-1,mediating the apoptosis of retinal cells and promoting the occurrence and development of retinal degenerative diseases.Upregulated autophagy could inhibit NLRP3 inflammasome activation,while inhibited autophagy can promote NLRP3 inflammasome activation,which leaded to the accelerated emergence of drusen and lipofuscin deposition under the neurosensory retina.The activated NLRP3 inflammasome could further inhibit autophagy,thus forming a vicious cycle that accelerated the damage and death of RGCs.This review discussed the relationship between NLRP3 inflammasome and autophagy and its effects on RGCs in age-related macular degeneration,providing a new perspective and direction for the treatment of retinal diseases. 展开更多
关键词 AUTOPHAGY age-related macular degeneration NLRP3 inflammasome retinal degeneration retinal ganglion cells
下载PDF
ON MONOTONE TRAVELING WAVES FOR NICHOLSON'S BLOWFLIES EQUATION WITH DEGENERATE p-LAPLACIAN DIFFUSION
14
作者 Rui HUANG Yong WANG Zhuo YIN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1550-1571,共22页
We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth tr... We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth traveling wave solutions by phase plane analysis methods.Moreover,we show the existence and regularity of an original solution via a compactness analysis.Finally,we prove the stability and exponential convergence rate of traveling waves by an approximated weighted energy method. 展开更多
关键词 degenerate diffusion P-LAPLACIAN traveling waves stability
下载PDF
Lower limb suspension induces threshold-specific alterations of motor units properties that are reversed by active recovery
15
作者 Giacomo Valli Fabio Sarto +4 位作者 Andrea Casolo Alessandro Del Vecchio Martino V.Franchi Marco V.Narici Giuseppe De Vito 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第2期264-276,共13页
Purpose:This study aimed to non-invasively test the hypothesis that(a) short-term lower limb unloading would induce changes in the neural control of force production(based on motor units(MUs) properties) in the vastus... Purpose:This study aimed to non-invasively test the hypothesis that(a) short-term lower limb unloading would induce changes in the neural control of force production(based on motor units(MUs) properties) in the vastus lateralis muscle and(b) possible changes are reversed by active recovery(AR).Methods:Ten young males underwent 10 days of unilateral lower limb suspension(ULLS) followed by 21 days of AR.During ULLS,participants walked exclusively on crutches with the dominant leg suspended in a slightly flexed position(15°-20°) and with the contralateral foot raised by an elevated shoe.The AR was based on resistance exercise(leg press and leg extension) and executed at 70% of each participant’s 1repetition maximum,3 times/week.Maximal voluntary isometric contraction(MVC) of knee extensors and MUs properties of the vastus lateralis muscle were measured at baseline,after ULLS,and after AR.MUs were identified using high-density electromyography during trapezoidal isometric contractions at 10%,25%,and 50% of the current MVC,and individual MUs were tracked across the 3 data collection points.Results:We identified 1428 unique MUs,and 270 of them(18.9%) were accurately tracked.After ULLS,MVC decreased by 29.77%,MUs absolute recruitment/derecruitment thresholds were reduced at all contraction intensities(with changes between the 2 variables strongly correlated),while discharge rate was reduced at 10% and 25% but not at 50% MVC.Impaired MVC and MUs properties fully recovered to baseline levels after AR.Similar changes were observed in the pool of total as well as tracked MUs.Conclusion:Our novel results demonstrate,non-invasively,that 10 days of ULLS affected neural control predominantly by altering the discharge rate of lower-threshold but not of higher-threshold MUs,suggesting a preferential impact of disuse on motoneurons with a lower depolarization threshold.However,after 21 days of AR,the impaired MUs properties were fully restored to baseline levels,highlighting the plasticity of the components involved in neural control. 展开更多
关键词 DISUSE High-density EMG Muscle disuse Neural impairment Neuromuscular degeneration
下载PDF
Small molecules to target tau amyloid aggregation
16
作者 Zoe Manglano-Artuñedo Samuel Peña-Díaz Salvador Ventura 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期509-511,共3页
Protein aggregation has been linked with many neurodegenerative diseases,such as Alzheimer’s disease(AD)or Parkinson’s disease.AD belongs to a group of heterogeneous and incurable neurodegenerative disorders collect... Protein aggregation has been linked with many neurodegenerative diseases,such as Alzheimer’s disease(AD)or Parkinson’s disease.AD belongs to a group of heterogeneous and incurable neurodegenerative disorders collectively known as tauopathies.They comprise frontotemporal dementia,Pick’s disease,or corticobasal degeneration,among others.The symptomatology varies with the specific tau protein variant involved and the affected brain region or cell type.However,they share a common neuropathological hallmark-the formation of proteinaceous deposits named neurofibrillary tangles.Neurofibrillary tangles,primarily composed of aggregated tau(Zhang et al.,2022),disrupt normal neuronal functions,leading to cell death and cognitive decline. 展开更多
关键词 TAU DEGENERATION AGGREGATION
下载PDF
Astrocyte syncytium:from neonatal genesis to aging degeneration
17
作者 Min Zhou Shiying Zhong Alexei Verkhratsky 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期395-396,共2页
Modern neuroscience began from all reaching and fierce conflict between“neuronismo and reticulismo”——between neuronal and reticular theories of the organization of the nervous system;the conflict culminated in Dec... Modern neuroscience began from all reaching and fierce conflict between“neuronismo and reticulismo”——between neuronal and reticular theories of the organization of the nervous system;the conflict culminated in December of 1906 in Stockholm where Santiago Ramon y Cajal(the proponent of the neuronal doctrine)and Camillo Golgi(who advocated the syncytial reticular organization of neural networks)delivered their Noble prize lectures(Verkhratsky,2009). 展开更多
关键词 DEGENERATION NEONATAL AGING
下载PDF
Calcium channels caught in peripheral glia’s tug-of-war on axon regeneration in Drosophila
18
作者 Jackson Powell Tobias Steinschaden +1 位作者 Rose Horowitz Yuanquan Song 《Neural Regeneration Research》 SCIE CAS 2025年第2期475-476,共2页
Neural damage or degeneration is at the crux of many diseases,and treatment of these diseases will require the development of therapeutics to enhance and guide neural regeneration.Both intrinsic and extrinsic factors ... Neural damage or degeneration is at the crux of many diseases,and treatment of these diseases will require the development of therapeutics to enhance and guide neural regeneration.Both intrinsic and extrinsic factors dictate a neuron’s ability to regenerate,and the combination of these factors results in the great regenerative capacity of the peripheral nervous system(PNS)and the poor regenerative capacity of the central nervous system(CNS)following injury.At the core of a neuron’s function is its ability to relay electrochemical signals,and a neuron’s excitability is a key factor in its ability to regenerate.Recent works have focused on the changes in neuronal electrophysiological properties,firing patterns,and ion flux after injury,which differentially activate signaling pathways at the core of regeneration.The role of glia in neuron regeneration has long been studied. 展开更多
关键词 DEGENERATION FIRING SYSTEM
下载PDF
Actin(g) toward a revised understanding of the role of cytoskeletal dynamics in neuronal bioenergetics
19
作者 Sabrina M.Holland Gianluca Gallo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2109-2110,共2页
Neurons are energy-demanding cells.Disruptions in energy metabolism can quickly interrupt neuronal function,leading to cell death and neurodegeneration.For instance,ischemia rapidly depletes adenosine triphosphate(ATP... Neurons are energy-demanding cells.Disruptions in energy metabolism can quickly interrupt neuronal function,leading to cell death and neurodegeneration.For instance,ischemia rapidly depletes adenosine triphosphate(ATP)thereby disrupting energy-dependent cellular processes crucial for homeostasis,and axon degeneration is preceded by a collapse of axonal ATP levels. 展开更多
关键词 METABOLISM HOMEOSTASIS DEGENERATION
下载PDF
Unraveling the potential of acute intermittent hypoxia as a strategy for inducing robust repair in multiple sclerosis
20
作者 Valerie M.K.Verge Nataliya Tokarska Justin M.Naniong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2339-2340,共2页
Multiple sclerosis(MS)is a debilitating inflammatory disease of the central nervous system characterized by immune-mediated segmental demyelination and variable degrees of axonal and neuronal degeneration that contrib... Multiple sclerosis(MS)is a debilitating inflammatory disease of the central nervous system characterized by immune-mediated segmental demyelination and variable degrees of axonal and neuronal degeneration that contribute to disability.Inducing efficient and effective repair programs following demyelination is a major goal and challenge in MS.Conventional MS therapies focus largely on modulating the immune aspects of the disease contributing to lesions.While this alleviates some symptoms and mitigates damage,it does not tackle the fundamental challenge of effective remyelination,which few MS patients experience,especially in the progressive phase of the disease. 展开更多
关键词 SCLEROSIS DEGENERATION DAMAGE
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部