NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperat...NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperatures are essential to denitration. In this work, a series of bimetallic CeCu-SAPO-34 molecular sieves were synthesized by one-step hydrothermal method. The Ce Cu-SAPO-34 maintained good crystallinity and a regular hexahedron appearance of Cu-SAPO-34 after introducing Ce species, while exhibiting a higher specific surface area and pore volume. The as-prepared CeCu-SAPO-34 with 0.02%(mass) Ce constituent exhibited the best catalytic activity below 300℃ and a maximum NO_(x) conversion of 99% was attained;the NO_(x) removal rates of more than 68% and 94% were achieved at 150℃ and 200℃, respectively. And the introduction of cerium species in Cu-SAPO-34 improves the low-temperature hydrothermal stability of the catalyst towards NH_(3)-SCR reaction. Additionally, the introduced Ce species could enhance the formation of abundant weak Br?nsted acid centers and promote the synergistic effect between CuO grains and isolated Cu^(2+) to enhance the redox cycle, which benefit the NH_(3)-SCR reaction.This work provides a facile synthesis method of high-efficiency SCR denitration catalysts towards diesel vehicles exhaust treatment under low temperature.展开更多
Developing deNO_(x)catalysts with lower activity temperatures range significantly reduces NH_(3)selective catalytic reduction(SCR)operating costs for low-temperature industrial flue gases.Herein,a novel FeVO_(4)/CeO_(...Developing deNO_(x)catalysts with lower activity temperatures range significantly reduces NH_(3)selective catalytic reduction(SCR)operating costs for low-temperature industrial flue gases.Herein,a novel FeVO_(4)/CeO_(2)catalyst with great low-temperature NH_(3)-SCR and nitrogen selectivity was synthesized using a dipping method.Characterization techniques such as X-ray diffraction,Raman spectroscopy,specific surface and porosity analysis,H2 temperature-programmed reduction,NH_(3)temperature-programmed desorption,X-ray photoelectron spectroscopy,and the in situ diffused reflectance infrared Fourier transform spectroscopy were used to investigate the catalytic mechanism.An appropriate addition for FeVO_(4)in the catalyst was 5 wt.%from the results,and the active substance content reached the maximum dispersal capacity of the carrier.The NO_(x)conversion exceeded 90%,and the nitrogen selectivity was more than 98%over this catalyst at 200–350℃.The activity was kept at 88%after 7.5 h of reaction at 200℃ for 7.5 h in 35 mg m^(-3)SO_(2)gas.The remarkable deNO_(x)activity,nitrogen selectivity,and sulphur resistance performances are attributed to the low redox temperature,the abundance of medium-strong acid and strong acid sites,the sufficient adsorbed oxygen,and the superior Fe^(2+)content on the surface.The Langmuir–Hinshelwood mechanism was observed on the FeVO_(4)/CeO_(2)catalyst in the NH_(3)selective catalytic reduction of NO_(x).展开更多
基金supported by Project of Central Government for Local Science and Technology Development of China (2022JH6/100100050)the National Natural Science Foundation of China (21776028)Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (ZJKF2001)。
文摘NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperatures are essential to denitration. In this work, a series of bimetallic CeCu-SAPO-34 molecular sieves were synthesized by one-step hydrothermal method. The Ce Cu-SAPO-34 maintained good crystallinity and a regular hexahedron appearance of Cu-SAPO-34 after introducing Ce species, while exhibiting a higher specific surface area and pore volume. The as-prepared CeCu-SAPO-34 with 0.02%(mass) Ce constituent exhibited the best catalytic activity below 300℃ and a maximum NO_(x) conversion of 99% was attained;the NO_(x) removal rates of more than 68% and 94% were achieved at 150℃ and 200℃, respectively. And the introduction of cerium species in Cu-SAPO-34 improves the low-temperature hydrothermal stability of the catalyst towards NH_(3)-SCR reaction. Additionally, the introduced Ce species could enhance the formation of abundant weak Br?nsted acid centers and promote the synergistic effect between CuO grains and isolated Cu^(2+) to enhance the redox cycle, which benefit the NH_(3)-SCR reaction.This work provides a facile synthesis method of high-efficiency SCR denitration catalysts towards diesel vehicles exhaust treatment under low temperature.
基金supported by the National Natural Science Foundation of China(52204332 and 52174290)the Outstanding Youth Fund of Anhui Province(2208085J19)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB450002).
文摘Developing deNO_(x)catalysts with lower activity temperatures range significantly reduces NH_(3)selective catalytic reduction(SCR)operating costs for low-temperature industrial flue gases.Herein,a novel FeVO_(4)/CeO_(2)catalyst with great low-temperature NH_(3)-SCR and nitrogen selectivity was synthesized using a dipping method.Characterization techniques such as X-ray diffraction,Raman spectroscopy,specific surface and porosity analysis,H2 temperature-programmed reduction,NH_(3)temperature-programmed desorption,X-ray photoelectron spectroscopy,and the in situ diffused reflectance infrared Fourier transform spectroscopy were used to investigate the catalytic mechanism.An appropriate addition for FeVO_(4)in the catalyst was 5 wt.%from the results,and the active substance content reached the maximum dispersal capacity of the carrier.The NO_(x)conversion exceeded 90%,and the nitrogen selectivity was more than 98%over this catalyst at 200–350℃.The activity was kept at 88%after 7.5 h of reaction at 200℃ for 7.5 h in 35 mg m^(-3)SO_(2)gas.The remarkable deNO_(x)activity,nitrogen selectivity,and sulphur resistance performances are attributed to the low redox temperature,the abundance of medium-strong acid and strong acid sites,the sufficient adsorbed oxygen,and the superior Fe^(2+)content on the surface.The Langmuir–Hinshelwood mechanism was observed on the FeVO_(4)/CeO_(2)catalyst in the NH_(3)selective catalytic reduction of NO_(x).