Adsorptive reactors(AR),in which an adsorptive functionality is incorporated into the catalytic reactors,offer enhanced performance over their conventional counterparts due to the effective manipulation of concentrati...Adsorptive reactors(AR),in which an adsorptive functionality is incorporated into the catalytic reactors,offer enhanced performance over their conventional counterparts due to the effective manipulation of concentration and temperature profiles.The operation of these attractive reactors is,however,inherently unsteady state,complicating the design and operation of such sorption-enhanced processes.In order to capture,comprehend and capitalize upon the rich dynamic texture of adsorptive reactors,it is necessary to employ cyclic steady state algorithms describing the entire reaction-adsorption/desorption cycle.The stability of this cyclic steady state is of great importance for the design and operation of adsorptive reactors.In this paper,the cyclic steady state of previously proposed novel adsorptive reactor designs has been calculated and then optimized to give maximum space–time yields.The results obtained revealed unambiguously that an improvement potential of up to multifold level could be attained under the optimized cyclic steady state conditions.This additional improvement resulted from the reduction of the regeneration time well below the reaction-adsorption time,which means,in turn,more space–time yield.展开更多
Recently, as a direct consequence of the dwindling world oil reserves and the growing awareness of the environmental problems associated with the use of coal as energy source, there is growing interest in cheaper, abu...Recently, as a direct consequence of the dwindling world oil reserves and the growing awareness of the environmental problems associated with the use of coal as energy source, there is growing interest in cheaper, abundant and cleaner burning methane. The Gas-to-Liquid technology offers perhaps the most attractive routes for the exploitation of the world huge and growing natural gas resources. Using this process the erstwhile stranded gas is converted to premium grade liquid fuels and chemicals that are easily transported. However, a widespread application of the GTL process is being hampered by economical and technical challenges. The high cost of synthesis gas, for instance, weighs heavily on the economics and competitiveness of the process limiting its wider application. This work presented a modified Gas-to-Liquid process that eliminates the costly synthesis gas production step. The proposed process utilized an alternative pathway for methane activation via the production of chloromethane derivatives which are then converted to hydrocarbons. It established that hydrocarbons mainly olefins can be economically produced from di- and tri-chloro- methanes over a typical iron-based Fischer Tropsch catalysts in a moving bed reactor at industrially relevant conditions. Some of the attractions of the proposed process include a) the elimination of the costly air separation plant requirement b) high process selectivity and c) significant reduction of carbon dioxide emissions thereby saving on feedstock loss and the costly CO2 removal and isolation processes.展开更多
Dioxin production is a worldwide concern because of its persistence and carcinogenic,teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to ...Dioxin production is a worldwide concern because of its persistence and carcinogenic,teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction,pyrolysis gas oxidized by seven common oxygen carriers, namely, Cu O, Ni O, Ca SO4, Co O,Fe2O3, Mn3O4, and Fe Ti O3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers(Cu O, Ni O, Fe2O3, and Fe Ti O3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste.展开更多
If poetics refers broadly to the principles by which things are made, how is the kind of process that yields poetry (in the narrow sense) related to other kinds of making? This essay explores promising resonances b...If poetics refers broadly to the principles by which things are made, how is the kind of process that yields poetry (in the narrow sense) related to other kinds of making? This essay explores promising resonances between traditional poetics and new paradigms coming out of complexity and systems theory. Of particular interest is Terrence Deacon's Incomplete Nature, an account of the relationships among layers of emergent order in the universe, under the heading of a general theory of dynamics. In particular, this essay understands poetry in relation to other kinds of making through three principles Deacon identifies as crucial: constraint, emergence, and absence. These principles tend to validate rather than to undermine traditional accounts of poetic making as inspiration, often involving entification in the form of attribution of creative agency to entities such as muses or to the text itself.展开更多
基金the German research council(Deutsche Forschungsgemeinschaft) for their financial support to the project:AG 26/18-1
文摘Adsorptive reactors(AR),in which an adsorptive functionality is incorporated into the catalytic reactors,offer enhanced performance over their conventional counterparts due to the effective manipulation of concentration and temperature profiles.The operation of these attractive reactors is,however,inherently unsteady state,complicating the design and operation of such sorption-enhanced processes.In order to capture,comprehend and capitalize upon the rich dynamic texture of adsorptive reactors,it is necessary to employ cyclic steady state algorithms describing the entire reaction-adsorption/desorption cycle.The stability of this cyclic steady state is of great importance for the design and operation of adsorptive reactors.In this paper,the cyclic steady state of previously proposed novel adsorptive reactor designs has been calculated and then optimized to give maximum space–time yields.The results obtained revealed unambiguously that an improvement potential of up to multifold level could be attained under the optimized cyclic steady state conditions.This additional improvement resulted from the reduction of the regeneration time well below the reaction-adsorption time,which means,in turn,more space–time yield.
文摘Recently, as a direct consequence of the dwindling world oil reserves and the growing awareness of the environmental problems associated with the use of coal as energy source, there is growing interest in cheaper, abundant and cleaner burning methane. The Gas-to-Liquid technology offers perhaps the most attractive routes for the exploitation of the world huge and growing natural gas resources. Using this process the erstwhile stranded gas is converted to premium grade liquid fuels and chemicals that are easily transported. However, a widespread application of the GTL process is being hampered by economical and technical challenges. The high cost of synthesis gas, for instance, weighs heavily on the economics and competitiveness of the process limiting its wider application. This work presented a modified Gas-to-Liquid process that eliminates the costly synthesis gas production step. The proposed process utilized an alternative pathway for methane activation via the production of chloromethane derivatives which are then converted to hydrocarbons. It established that hydrocarbons mainly olefins can be economically produced from di- and tri-chloro- methanes over a typical iron-based Fischer Tropsch catalysts in a moving bed reactor at industrially relevant conditions. Some of the attractions of the proposed process include a) the elimination of the costly air separation plant requirement b) high process selectivity and c) significant reduction of carbon dioxide emissions thereby saving on feedstock loss and the costly CO2 removal and isolation processes.
基金supported by the National Basic Research Program of China (973 Program) (No. 2011CB201502)the National Key Technology R&D Program of China (No. 2010BAC66B03)
文摘Dioxin production is a worldwide concern because of its persistence and carcinogenic,teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction,pyrolysis gas oxidized by seven common oxygen carriers, namely, Cu O, Ni O, Ca SO4, Co O,Fe2O3, Mn3O4, and Fe Ti O3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers(Cu O, Ni O, Fe2O3, and Fe Ti O3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste.
文摘If poetics refers broadly to the principles by which things are made, how is the kind of process that yields poetry (in the narrow sense) related to other kinds of making? This essay explores promising resonances between traditional poetics and new paradigms coming out of complexity and systems theory. Of particular interest is Terrence Deacon's Incomplete Nature, an account of the relationships among layers of emergent order in the universe, under the heading of a general theory of dynamics. In particular, this essay understands poetry in relation to other kinds of making through three principles Deacon identifies as crucial: constraint, emergence, and absence. These principles tend to validate rather than to undermine traditional accounts of poetic making as inspiration, often involving entification in the form of attribution of creative agency to entities such as muses or to the text itself.