针对传统蚁群算法在移动机器人路径规划中存在的收敛速度慢、收敛路径质量低、死锁以及动态避障能力差的问题,本文提出基于改进避障策略和双优化蚁群算法(Double optimization ant colony algorithm,DOACO)的路径规划方法。首先,设计新...针对传统蚁群算法在移动机器人路径规划中存在的收敛速度慢、收敛路径质量低、死锁以及动态避障能力差的问题,本文提出基于改进避障策略和双优化蚁群算法(Double optimization ant colony algorithm,DOACO)的路径规划方法。首先,设计新的概率转移函数并对函数中的各分量权重进行自适应调整,以优化算法的收敛速度;然后,利用碰撞检测策略对路径进行再优化,进一步提高算法的性能;最后,针对常规避障策略避障能力差、实时性不足等问题,提出避障行为与局部路径重规划相结合的避障策略。实验结果表明,DOACO算法相对于传统的蚁群算法,不仅能规划出更优的路径,收敛速度也更快,而且新的避障策略也可以有效地应对多种碰撞情况。展开更多
文摘针对传统蚁群算法在移动机器人路径规划中存在的收敛速度慢、收敛路径质量低、死锁以及动态避障能力差的问题,本文提出基于改进避障策略和双优化蚁群算法(Double optimization ant colony algorithm,DOACO)的路径规划方法。首先,设计新的概率转移函数并对函数中的各分量权重进行自适应调整,以优化算法的收敛速度;然后,利用碰撞检测策略对路径进行再优化,进一步提高算法的性能;最后,针对常规避障策略避障能力差、实时性不足等问题,提出避障行为与局部路径重规划相结合的避障策略。实验结果表明,DOACO算法相对于传统的蚁群算法,不仅能规划出更优的路径,收敛速度也更快,而且新的避障策略也可以有效地应对多种碰撞情况。