Background The development of a sustainable business model with social acceptance,makes necessary to develop new strategies to guarantee the growth,health,and well-being of farmed animals.Debaryomyces hansenii is a ye...Background The development of a sustainable business model with social acceptance,makes necessary to develop new strategies to guarantee the growth,health,and well-being of farmed animals.Debaryomyces hansenii is a yeast species that can be used as a probiotic in aquaculture due to its capacity to i)promote cell proliferation and differen-tiation,ii)have immunostimulatory effects,iii)modulate gut microbiota,and/or iv)enhance the digestive function.To provide inside into the effects of D.hansenii on juveniles of gilthead seabream(Sparus aurata)condition,we inte-grated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine condition,through histological and microbiota state,and its transcriptomic profiling.Results After 70 days of a nutritional trial in which a diet with low levels of fishmeal(7%)was supplemented with 1.1%of D.hansenii(17.2×10^(5) CFU),an increase of ca.12%in somatic growth was observed together with an improve-ment in feed conversion in fish fed a yeast-supplemented diet.In terms of intestinal condition,this probiotic modu-lated gut microbiota without affecting the intestine cell organization,whereas an increase in the staining intensity of mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain lectins were noted in goblet cells.Changes in microbiota were characterized by the reduction in abundance of several groups of Proteobacteria,especially those characterized as opportunistic groups.The microarrays-based transcrip-tomic analysis found 232 differential expressed genes in the anterior-mid intestine of S.aurata,that were mostly related to metabolic,antioxidant,immune,and symbiotic processes.Conclusions Dietary administration of D.hansenii enhanced somatic growth and improved feed efficiency param-eters,results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools indicated.This probiotic yeast stimulated host-microbiota interactions without altering the intestinal cell organization nor generating dysbiosis,which demonstrated its safety as a feed additive.At the transcriptomic level,D.hansenii pro-moted metabolic pathways,mainly protein-related,sphingolipid,and thymidylate pathways,in addition to enhance antioxidant-related intestinal mechanisms,and to regulate sentinel immune processes,potentiating the defensive capacity meanwhile maintaining the homeostatic status of the intestine.展开更多
The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sau...The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sausages were investigated.The co-inoculated sausages showed higher free amino acid and organic acid contents than the non-inoculated control and sausages inoculated with D.hansenii alone.Meanwhile,the sausages inoculated with D.hansenii+L.plantarum,D.hansenii+L.sakei and D.hansenii+L.curvatus had the highest contents of aldehydes,esters and alcohols,respectively.The results of electronic tongue,electronic nose and sensory evaluation demonstrated that compared with the sausage inoculated with D.hansenii,the sour taste and fl oral odour increased and the fatty odour decreased in the sausage inoculated with D.hansenii+L.sakei;this was more favourable for the development of a desirable fl avour in sausages.Moreover,the partial least squares regression analysis indicated that 10 taste and 33 odour compounds were mainly responsible for the differences in the flavour profiles among the sausages.Overall,these findings contributed to a more comprehensive understanding of the formation of sensory characteristics in dry sausages co-inoculated with yeast and LAB.展开更多
Yeasts play a critical role in the flavor formation of dry-cured ham.In this study,41 yeast isolates from the dry-cured ham at different processing stages were evaluated for their technological properties.Debaryomyces...Yeasts play a critical role in the flavor formation of dry-cured ham.In this study,41 yeast isolates from the dry-cured ham at different processing stages were evaluated for their technological properties.Debaryomyces hansenii was the most dominant yeast and has been detected at each phase of dry-cured ham,followed by Candida zeylanoides which was mainly detected in salting phase.Yarrowia bubula and Yarrowia alimentaria were found at the first two-phase of dry-cured ham.All isolates of yeast showed enzymatic activities against milk protein and tributyrin,while only 4 strains displayed proteolytic activity on meat protein.Yeast strains were grown in a meat model medium and volatile compounds were identified.The result showed that inoculated yeast strains could promote the production of volatiles and there were significant differences among strains.D.hansenii S25 showed the highest production of volatile compounds,followed by the strain C.zeylanoides C4.D.hansenii S25 was the highest producer of alcohols showing the highest production of benzeneethanol and 3-(methylthio)-1-propanol.Based on OAV and PLS analysis,D.hansenii S25 was strongly correlated with overall flavor and key volatile compounds of dry-cured ham,which could be selected as potential starter cultures.展开更多
基金financed through the DIETAplus project of JACUMAR(Junta de Cultivos Marinos,MAPAMASpanish government),which is cofunded with FEMP funds(EU)+3 种基金funded by means of grants from the Spanish Government:PID2019-106878RB-I00 and IS was granted with a Postdoctoral fellowship(FJC2020-043933-I)support of Fondecyt iniciación(project number 11221308)Fondecyt regular(project number 11221308)grants(Agencia Nacional de Investigacióny Desarrollo de Chile,Government of Chile),respectivelythe framework of the network LARVAplus“Strategies for the development and im-provement of fish larvae production in Ibero-America”(117RT0521)funded by the Ibero-American Program of Science and Technology for Development(CYTED,Spain)。
文摘Background The development of a sustainable business model with social acceptance,makes necessary to develop new strategies to guarantee the growth,health,and well-being of farmed animals.Debaryomyces hansenii is a yeast species that can be used as a probiotic in aquaculture due to its capacity to i)promote cell proliferation and differen-tiation,ii)have immunostimulatory effects,iii)modulate gut microbiota,and/or iv)enhance the digestive function.To provide inside into the effects of D.hansenii on juveniles of gilthead seabream(Sparus aurata)condition,we inte-grated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine condition,through histological and microbiota state,and its transcriptomic profiling.Results After 70 days of a nutritional trial in which a diet with low levels of fishmeal(7%)was supplemented with 1.1%of D.hansenii(17.2×10^(5) CFU),an increase of ca.12%in somatic growth was observed together with an improve-ment in feed conversion in fish fed a yeast-supplemented diet.In terms of intestinal condition,this probiotic modu-lated gut microbiota without affecting the intestine cell organization,whereas an increase in the staining intensity of mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain lectins were noted in goblet cells.Changes in microbiota were characterized by the reduction in abundance of several groups of Proteobacteria,especially those characterized as opportunistic groups.The microarrays-based transcrip-tomic analysis found 232 differential expressed genes in the anterior-mid intestine of S.aurata,that were mostly related to metabolic,antioxidant,immune,and symbiotic processes.Conclusions Dietary administration of D.hansenii enhanced somatic growth and improved feed efficiency param-eters,results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools indicated.This probiotic yeast stimulated host-microbiota interactions without altering the intestinal cell organization nor generating dysbiosis,which demonstrated its safety as a feed additive.At the transcriptomic level,D.hansenii pro-moted metabolic pathways,mainly protein-related,sphingolipid,and thymidylate pathways,in addition to enhance antioxidant-related intestinal mechanisms,and to regulate sentinel immune processes,potentiating the defensive capacity meanwhile maintaining the homeostatic status of the intestine.
基金funded by the National Natural Science Foundation of China(32172232 and 31771990)the Major Science and Technology Projects of Heilongjiang Province(2021ZX12B05).
文摘The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sausages were investigated.The co-inoculated sausages showed higher free amino acid and organic acid contents than the non-inoculated control and sausages inoculated with D.hansenii alone.Meanwhile,the sausages inoculated with D.hansenii+L.plantarum,D.hansenii+L.sakei and D.hansenii+L.curvatus had the highest contents of aldehydes,esters and alcohols,respectively.The results of electronic tongue,electronic nose and sensory evaluation demonstrated that compared with the sausage inoculated with D.hansenii,the sour taste and fl oral odour increased and the fatty odour decreased in the sausage inoculated with D.hansenii+L.sakei;this was more favourable for the development of a desirable fl avour in sausages.Moreover,the partial least squares regression analysis indicated that 10 taste and 33 odour compounds were mainly responsible for the differences in the flavour profiles among the sausages.Overall,these findings contributed to a more comprehensive understanding of the formation of sensory characteristics in dry sausages co-inoculated with yeast and LAB.
基金the financial support of Guizhou Province Science and Technology Plan Project(QKHZC[2020]1Y152)the Guizhou High-level Innovative Talent Training Project(Qianke Cooperation Platform Talent number[2016]5662)Guizhou Science and Technology Innovation Talent Team of Ecological Characteristic Meat Products(QKHPTRC[2020]5004).
文摘Yeasts play a critical role in the flavor formation of dry-cured ham.In this study,41 yeast isolates from the dry-cured ham at different processing stages were evaluated for their technological properties.Debaryomyces hansenii was the most dominant yeast and has been detected at each phase of dry-cured ham,followed by Candida zeylanoides which was mainly detected in salting phase.Yarrowia bubula and Yarrowia alimentaria were found at the first two-phase of dry-cured ham.All isolates of yeast showed enzymatic activities against milk protein and tributyrin,while only 4 strains displayed proteolytic activity on meat protein.Yeast strains were grown in a meat model medium and volatile compounds were identified.The result showed that inoculated yeast strains could promote the production of volatiles and there were significant differences among strains.D.hansenii S25 showed the highest production of volatile compounds,followed by the strain C.zeylanoides C4.D.hansenii S25 was the highest producer of alcohols showing the highest production of benzeneethanol and 3-(methylthio)-1-propanol.Based on OAV and PLS analysis,D.hansenii S25 was strongly correlated with overall flavor and key volatile compounds of dry-cured ham,which could be selected as potential starter cultures.