The reclamation and utilization of debris flow waste-shoal land plays an important role in the mitigation and control of debris flow hazards, which thus contributes a lot to the exploitation of insufficient land resou...The reclamation and utilization of debris flow waste-shoal land plays an important role in the mitigation and control of debris flow hazards, which thus contributes a lot to the exploitation of insufficient land resources in mountainous areas and the reduction of losses caused by debris flow. The aim of this paper is to discuss the features and mechanism of soil evolution of debris flow waste-shoal land so as to search for the available modes of its reclamation and utilization. The Jiangjiagou Ravine, a typical debris flow ravine, was selected to study soil evolution features of debris flow waste-shoal land based on the analysis of soil physicochemical properties and soil microstructure. It was found that the soil evolution rates of debris flow waste-shoal land varied with different modes of reclamation. For the land which had been reclaimed for less than 10 years, soil evolved most rapidly in paddy fields, and more rapidly in dry farmland than in naturally restored waste-shoal land. For the land which had been used for more than 10 years, the soil evolution rates of dry farmland, naturally restored waste-shoal land and paddy farmland decreased in the file. For the same utilization period of time, significant differences were recognized in soil evolution features under different modes of reclamation. Analysis data showed that soil clay content, soil thickness, the psephicity of skeleton particles and contents of microaggregates (<0.02 mm) in paddy farmland were all highest. Soil nutrients and porosity of dry farmland were better than those of paddy farmland and naturally restored waste-shoal land, and those of paddy farmland were superior to those of naturally restored waste-shoal land. Paddy farmland characterized by rapid pedogenesis, stable evolution and high utilizability was the priority candidate for the reclamation and utilization of debris flow waste-shoal land.展开更多
The stability of soil aggregates and the fractal characteristics of four typical land use types(farmland,grassland,woodland,and bare land) in the Jiangjiagou Ravine(Yunnan,China),a frequent debris flow occurring area,...The stability of soil aggregates and the fractal characteristics of four typical land use types(farmland,grassland,woodland,and bare land) in the Jiangjiagou Ravine(Yunnan,China),a frequent debris flow occurring area,were studied according to the normal mean mass diameter and fractal theory.The present research showed that the stability of the soil aggregates was different for the different land use types.When the soil depth was 0-30 cm,farmland soil formed more aggregates with diameters greater than 0.25 mm,i.e.,the farmland soil was more stable than that of the other three land uses.When the soil depth was 30-45 cm,the order of stability of the soil aggregates was woodland > grassland > farmland > bare land.The fractal dimensions had a significant linear positive correlation with the amount of soil particles with diameters of <0.25 mm,and a significant negative linear correlation with the amount of soil particles with diameters of 0.25-0.5 mm,0.5-1 mm and 1-2 mm.Smaller fractal dimensions of the soil particles correlated with more stable soil aggregates.The fractal dimensions had a positive linear correlation with the soil bulk density and a negative correlation with the concentration of organic matter.These results showed that soil aggregates can be used as a parameter for characterizing the soil structures and properties.According to these results,the soil particle fractal dimensions could not only objectively characterize the stability of the soil structure but also could be used to indicate soil structure and properties.In addition,these results have great significance for the discussion of the comprehensive evaluation of soil.展开更多
Compared to large-scale infrequent disasters like volcanic eruptions, earthquakes, and gas explosions from volcanic (maar) lakes, most small-scale everyday disasters (e.g., landslides and floods) are not well reported...Compared to large-scale infrequent disasters like volcanic eruptions, earthquakes, and gas explosions from volcanic (maar) lakes, most small-scale everyday disasters (e.g., landslides and floods) are not well reported and documented in Cameroon, despite the fact that cumulatively, they cause the most casualties and distress to the people affected. This paper documents a debris flow that occurred on the 1st of August 2012 in Kakpenyi, a quarter found in Tinta, one of the villages of Akwaya Sub Division in Manyu Division of the Southwest Region of Cameroon. The event started from the western slope (06°14.350'N & 09°31.475'E) of a hogback in the settlement, and mobilized ca 3.47 × 106 m3 of material over a ca 1 km distance. The material was made up of a chaotic mix of mud, rock fragments, boulders, twigs, tree logs, trunks, and roots. Its distal part dammed river Kakpenyi forming a 10 m deep lake which eventually safely emptied itself. No casualties were recorded but 20 people got injured and 21 people lost farmland. The debris flow was not caused by earthquake shaking. Instead, inappropriate land use acted as a remote cause to predispose the steep slope, while heavy rainfall triggered the flow. Verbal reports talk of a similar event 40 years ago in the area. This shows that Kakpenyi is vulnerable to this kind of hazard, requiring that major infrastructural development projects like roads and bridges in the area be preceded by detailed hazard and vulnerability assessments.展开更多
A Ms 8.0 large earthquake occurred in Sichuan,China on May 12,2008(hereafter called 5.12 Earthquake),and then a large debris flow happened in the quake-hit Qingping Township of Mianzhu county on August 13,2008(here...A Ms 8.0 large earthquake occurred in Sichuan,China on May 12,2008(hereafter called 5.12 Earthquake),and then a large debris flow happened in the quake-hit Qingping Township of Mianzhu county on August 13,2008(hereafter called 8.13 Debris Flow).The influence of two disasters on the changes in land use were analyzed by using highresolution aerial photos and satellite remote sensing images taken before and after the 5.12 Earthquake and 8.13 Debris Flow,the selection of suitable construction land were studied by learning experiences and lessons from the selection of resettlement areas and through field surveys and with land use transfer model and analytical model in combination with RS and GIS.The results showed that the influence of the 5.12 Earthquake on ecological environment was far greater than that of the 8.13 Debris Flow;there were more salient conflicts between population and land after the earthquake.Sites for post-disaster reconstruction should not be in disaster-prone areas or in gully-facing areas.Suitable land for settlement construction in I-1~I-5 low-hazard zones is optimal settlement areas for post-disaster reconstruction.展开更多
基金the joint support to this research project from the State Key Technology R & D Program of China (2006BAC10B04)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-302)
文摘The reclamation and utilization of debris flow waste-shoal land plays an important role in the mitigation and control of debris flow hazards, which thus contributes a lot to the exploitation of insufficient land resources in mountainous areas and the reduction of losses caused by debris flow. The aim of this paper is to discuss the features and mechanism of soil evolution of debris flow waste-shoal land so as to search for the available modes of its reclamation and utilization. The Jiangjiagou Ravine, a typical debris flow ravine, was selected to study soil evolution features of debris flow waste-shoal land based on the analysis of soil physicochemical properties and soil microstructure. It was found that the soil evolution rates of debris flow waste-shoal land varied with different modes of reclamation. For the land which had been reclaimed for less than 10 years, soil evolved most rapidly in paddy fields, and more rapidly in dry farmland than in naturally restored waste-shoal land. For the land which had been used for more than 10 years, the soil evolution rates of dry farmland, naturally restored waste-shoal land and paddy farmland decreased in the file. For the same utilization period of time, significant differences were recognized in soil evolution features under different modes of reclamation. Analysis data showed that soil clay content, soil thickness, the psephicity of skeleton particles and contents of microaggregates (<0.02 mm) in paddy farmland were all highest. Soil nutrients and porosity of dry farmland were better than those of paddy farmland and naturally restored waste-shoal land, and those of paddy farmland were superior to those of naturally restored waste-shoal land. Paddy farmland characterized by rapid pedogenesis, stable evolution and high utilizability was the priority candidate for the reclamation and utilization of debris flow waste-shoal land.
基金supported by the Research Fund for Commonweal Trades Meteorology (Grant No. GYHY201006039)the Starting fund fordoctoral research of Neijiang Normal University(Grant No.09249)
文摘The stability of soil aggregates and the fractal characteristics of four typical land use types(farmland,grassland,woodland,and bare land) in the Jiangjiagou Ravine(Yunnan,China),a frequent debris flow occurring area,were studied according to the normal mean mass diameter and fractal theory.The present research showed that the stability of the soil aggregates was different for the different land use types.When the soil depth was 0-30 cm,farmland soil formed more aggregates with diameters greater than 0.25 mm,i.e.,the farmland soil was more stable than that of the other three land uses.When the soil depth was 30-45 cm,the order of stability of the soil aggregates was woodland > grassland > farmland > bare land.The fractal dimensions had a significant linear positive correlation with the amount of soil particles with diameters of <0.25 mm,and a significant negative linear correlation with the amount of soil particles with diameters of 0.25-0.5 mm,0.5-1 mm and 1-2 mm.Smaller fractal dimensions of the soil particles correlated with more stable soil aggregates.The fractal dimensions had a positive linear correlation with the soil bulk density and a negative correlation with the concentration of organic matter.These results showed that soil aggregates can be used as a parameter for characterizing the soil structures and properties.According to these results,the soil particle fractal dimensions could not only objectively characterize the stability of the soil structure but also could be used to indicate soil structure and properties.In addition,these results have great significance for the discussion of the comprehensive evaluation of soil.
文摘Compared to large-scale infrequent disasters like volcanic eruptions, earthquakes, and gas explosions from volcanic (maar) lakes, most small-scale everyday disasters (e.g., landslides and floods) are not well reported and documented in Cameroon, despite the fact that cumulatively, they cause the most casualties and distress to the people affected. This paper documents a debris flow that occurred on the 1st of August 2012 in Kakpenyi, a quarter found in Tinta, one of the villages of Akwaya Sub Division in Manyu Division of the Southwest Region of Cameroon. The event started from the western slope (06°14.350'N & 09°31.475'E) of a hogback in the settlement, and mobilized ca 3.47 × 106 m3 of material over a ca 1 km distance. The material was made up of a chaotic mix of mud, rock fragments, boulders, twigs, tree logs, trunks, and roots. Its distal part dammed river Kakpenyi forming a 10 m deep lake which eventually safely emptied itself. No casualties were recorded but 20 people got injured and 21 people lost farmland. The debris flow was not caused by earthquake shaking. Instead, inappropriate land use acted as a remote cause to predispose the steep slope, while heavy rainfall triggered the flow. Verbal reports talk of a similar event 40 years ago in the area. This shows that Kakpenyi is vulnerable to this kind of hazard, requiring that major infrastructural development projects like roads and bridges in the area be preceded by detailed hazard and vulnerability assessments.
基金supported by the Directional Project (Grant No. KZCX2-EW-317)Western Light Project (Grant No. 09R2340340) of Chinese Academy of SciencesNational Natural Science Funds (Grant No. 41071350,41101552)
文摘A Ms 8.0 large earthquake occurred in Sichuan,China on May 12,2008(hereafter called 5.12 Earthquake),and then a large debris flow happened in the quake-hit Qingping Township of Mianzhu county on August 13,2008(hereafter called 8.13 Debris Flow).The influence of two disasters on the changes in land use were analyzed by using highresolution aerial photos and satellite remote sensing images taken before and after the 5.12 Earthquake and 8.13 Debris Flow,the selection of suitable construction land were studied by learning experiences and lessons from the selection of resettlement areas and through field surveys and with land use transfer model and analytical model in combination with RS and GIS.The results showed that the influence of the 5.12 Earthquake on ecological environment was far greater than that of the 8.13 Debris Flow;there were more salient conflicts between population and land after the earthquake.Sites for post-disaster reconstruction should not be in disaster-prone areas or in gully-facing areas.Suitable land for settlement construction in I-1~I-5 low-hazard zones is optimal settlement areas for post-disaster reconstruction.