期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Cumulative damage effect on debris slopes under frequent microseisms 被引量:1
1
作者 YANG Zhong-ping LI Shi-qi +2 位作者 TIAN Xin HU Yuan-xin LI Wan-kun 《Journal of Mountain Science》 SCIE CSCD 2022年第3期781-797,共17页
Debris slopes are widely distributed across the Three Gorges Reservoir area in China,and seasonal fluctuations of the water level in the area tend to cause high-frequency microseisms that subsequently induce landslide... Debris slopes are widely distributed across the Three Gorges Reservoir area in China,and seasonal fluctuations of the water level in the area tend to cause high-frequency microseisms that subsequently induce landslides on such debris slopes.In this study,a cumulative damage model of debris slope with varying slope characteristics under the effects of frequent microseisms was established,based on the accurate definition of slope damage variables.The cumulative damage behaviour and the mechanisms of slope instability and sliding under frequent microseisms were thus systematically investigated through a series of shaking table tests and discrete element numerical simulations,and the influences of related parameters such as bedrock,dry density and stone content were discussed.The results showed that the instability mode of a debris slope can be divided into a vibration-compaction stage,a crack generation stage,a crack development stage,and an instability stage.Under the action of frequent microseisms,debris slope undergoes the last three stages cyclically,which causes the accumulation to slide out in layers under the synergistic action of tension and shear,causing the slope to become destabilised.There are two sliding surfaces as well as the parallel tensile surfaces in the final instability of the debris slope.In the process of instability,the development trend of the damage accumulation curve remains similar for debris slopes with different parameters.However,the initial vibration compaction effect in the bedrock-free model is stronger than that in the bedrock model,with the overall cumulative damage degree in the former being lower than that of the latter.The damage degree of the debris slope with high dry density also develops more slowly than that of the debris slope with low dry density.The damage development rate of the debris slope does not always decrease with the increase of stone content.The damage degree growth rate of the debris slope with the optimal stone content is the lowest,and the increase or decrease of the stone content makes the debris slope instability happen earlier.The numerical simulation study also further reveals that the damage in the debris slope mainly develops in the form of crack formation and penetration,in which,shear failure occurs more frequently in the debris slope. 展开更多
关键词 Cumulative damage debris slopes Frequent microseisms Shaking table tests Discrete element numerical simulation
下载PDF
Slope Debris Flows in the Wenchuan Earthquake Area 被引量:13
2
作者 LI Yanfu WANG Zhaoyin +1 位作者 SHI Wenjing WANG Xuzhao 《Journal of Mountain Science》 SCIE CSCD 2010年第3期226-233,共8页
Avalanches and landslides,induced by the Wenchuan Earthquake on May 12,2008,resulted in a lot of disaggregated,solid material on slopes that could be readily mobilized as source material for debris flows.Rainstorms tr... Avalanches and landslides,induced by the Wenchuan Earthquake on May 12,2008,resulted in a lot of disaggregated,solid material on slopes that could be readily mobilized as source material for debris flows.Rainstorms triggered numerous slope debris flows with great damage to highways and rivers over the subsequent two years.Slope debris flows(as opposed to channelized debris flows) are defined as phenomena in which high-concentration mixtures of debris and water flow down slopes for short distances to highways and river banks.Based on field investigations and measurements of 19 slope debris flows,their main characteristics and potential mitigation strategies were studied.High rainfall intensity is the main triggering factor.Critical rainfall intensities for simultaneous occurrence of single,several and numerous slope debris flow events were 20 mm/day,30mm/day,and 90 mm/day,respectively.Field investigations also revealed that slope debris flows consist of high concentrations of cobbles,boulders and gravel.They are two-phase debris flows.The liquid phase plays the role of lubrication instead of transporting medium.Solid particles collide with each other and consume a lot of energy.The velocities of slope debris flows are very low,and their transport distances are only several tens of meters.Slope debris flows may be controlled by construction of drainage systems and by reforestation. 展开更多
关键词 slope debris flow rainfall intensity Wenchuan Earthquake LANDSLIDE AVALANCHE
下载PDF
Early warning model for slope debris flow initiation 被引量:4
3
作者 LI Ming-li JIANG Yuan-jun +3 位作者 YANG Tao HUANG Qiang-bing QIAO Jian-ping YANG Zong-ji 《Journal of Mountain Science》 SCIE CSCD 2018年第6期1342-1353,共12页
Early warning model of debris flow is important for providing local residents with reliable and accurate warning information to escape from debris flow hazards. This research studied the debris flow initiation in the ... Early warning model of debris flow is important for providing local residents with reliable and accurate warning information to escape from debris flow hazards. This research studied the debris flow initiation in the Yindongzi gully in Dujiangyan City, Sichuan province, China with scaled-down model experiments. We set rainfall intensity and slope angle as dominating parameters and carried out 20 scaled-down model tests under artificial rainfall conditions. The experiments set four slope angles(32°, 34°, 37°, 42°) and five rainfall intensities(60 mm/h, 90 mm/h, 120 mm/h, 150 mm/h, and 180 mm/h) treatments. The characteristic variables in the experiments, such as, rainfall duration, pore water pressure, moisture content, surface inclination, and volume were monitored. The experimental results revealed the failure mode of loose slope material and the process of slope debris flow initiation, as well as the relationship between the surface deformation and the physical parameters of experimental model. A traditional rainfall intensity-duration early warning model(I-D model) was firstly established by using a mathematical regression analysis, and it was then improved into ISD model and ISM model(Here, I is rainfall Intensity, S is Slope angle, D is rainfall Duration, and M is Moisture content). The warning model can provide reliable early warning of slope debris flow initiation. 展开更多
关键词 slope debris flow Artificial rainfallmodel Early warning model Model experiment
下载PDF
Effects of loose deposits on debris flow processes in the Aizi Valley, southwest China 被引量:5
4
作者 LIU Mei ZHANG Yong +3 位作者 TIAN Shu-feng CHEN Ning-sheng MAHFUZR Rahman JAVED Iqba 《Journal of Mountain Science》 SCIE CSCD 2020年第1期156-172,共17页
Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a cata... Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders. 展开更多
关键词 Aizi Valley Loose deposits debris flow process slope debris flow Boulder blockage Discharge amplification
下载PDF
Geohazards Induced by the Lushan Ms7.0 Earthquake in Sichuan Province, Southwest China:Typical Examples, Types and Distributional Characteristics 被引量:24
5
作者 ZHANG Yongshuang DONG Shuwen +5 位作者 HOU Chuntang GUO Changbao YAO Xin LI Bin DU Jianjun ZHANG Jiagui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第3期646-657,共12页
Geohazards induced by the Lushan Ms 7.0 earthquake on April 20, 2013 mainly have four types: collapse, landslide, slope debris flow, and sand-soil liquefaction. These geohazards mainly occurred near the epicenter, on... Geohazards induced by the Lushan Ms 7.0 earthquake on April 20, 2013 mainly have four types: collapse, landslide, slope debris flow, and sand-soil liquefaction. These geohazards mainly occurred near the epicenter, on steep slopes or below cliffs in high mountain and deep valley areas, and at or near fault ends. They have no obvious relationships to active faults, but their relationships to the weathering degree and structures of rock and rock mass are obvious. Compared with the Wenchuan Ms 8.0 earthquake on May 12, 2008, the Lnshan earthquake is relatively little in the impact force and the throwing amount. All of these should be related to the magnitude of this earthquake, not very large but not very little. This character of the Lushan earthquake would make some processes uncompleted so as to bring about some concealed geohazards. Finally, in order to deal with challenges presented by such conceal geohazards, some brief recommendations are put forward. 展开更多
关键词 Lushan earthquake GEOHAZARD COLLAPSE LANDSLIDE slope debris flow sand-soil liquation
下载PDF
Significance of glacio-morphological factors in glacier retreat:a case study of part of Chenab basin,Himalaya 被引量:4
6
作者 Rupal M.BRAHMBHATT I.M.BAHUGUNA +4 位作者 B.P RATHORE Anil V.KULKARNI Rajesh D.SHAH A.S.RAJAWAT Jeffrey S.KARGEL 《Journal of Mountain Science》 SCIE CSCD 2017年第1期128-141,共14页
A study has been carried out in part of Chenab basin,Himalaya to understand the relationship between glacio-morphological factors and change in glacial area. Initially change in areal extent of glaciers was derived fo... A study has been carried out in part of Chenab basin,Himalaya to understand the relationship between glacio-morphological factors and change in glacial area. Initially change in areal extent of glaciers was derived for two time frames(1962-2001/02 and 2001/02-2010/11). The study comprised of 324 glaciers for the monitoring period of 1962-2001/02 for,which 11% loss in glacial area was observed. Two hundred and thirty-eight glaciers were further monitored between 2001/02 and 2010/11. These glaciers showed an area loss of 1.1%. The annual deglaciation has been found to be higher during the period of 1962-2001/02 compared to 2001/02-2010/11. The spatial and temporal variability in deglaciation was also addressed usingglacio-morphic parameters. Area,length,percentage of debris cover,and various elevation parameters of glaciers were observed to have significant controls on relationships to the rate of glacial shrinkage. Largerarea and longer glaciers show a lower percentage of retreat than smaller and shorter ones. Moreover,glaciers located at lower altitudes and having gentle slopes show more area retreat. The results of area retreat in debris covered and debris free glaciers supports that the glaciers covered by debris retard ice melting at some extent. 158 glaciers were observed having no debris cover,and these exhibit 14% of loss in surface area. In glaciers having 40% debris cover,8% of deglaciation was observed. The glaciers located below equilibrium line altitude(ELA) have experienced 4.6% of deglaciation for the time frame 2001/02 – 2010/11 whereas it was found to be 1.1% for the glaciers occurring above ELA. However,theorientation of glaciers did not show any considerable influence on glacial change based on hypothesis. 展开更多
关键词 Glacier retreat Aspect slope Altitude debris cover Areal extent Climate change
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部