This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we emplo...This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we employ the fifth-order Bezier curve to generate and smooth the reference path along the road centerline.Cartesian coordinates are then transformed to achieve the curvature continuity of the generated curve.Considering the road constraints and vehicle dynamics,limited polynomial candidate trajectories are generated and smoothed in a curvilinear coordinate system.Furthermore,in selecting the optimal trajectory,we develop a unified and auto-tune objective function based on the principle of least action by employing AVs to simulate drivers’behavior and summarizing their manipulation characteristics of“seeking benefits and avoiding losses.”Finally,by integrating the idea of receding-horizon optimization,the proposed framework is achieved by considering dynamic multi-performance objectives and selecting trajectories that satisfy feasibility,optimality,and adaptability.Extensive simulations and experiments are performed,and the results demonstrate the framework’s feasibility and effectiveness,which avoids both dynamic and static obstacles and applies to various scenarios with multi-source interactive traffic participants.Moreover,we prove that the proposed method can guarantee real-time planning and safety requirements compared to drivers’manipulation.展开更多
以专利引证网络为载体,从知识基因稳定性、遗传性以及变异性等基本特征出发,提出一种基于subject-action-object三元组的知识基因提取方法.应用连接度算法分析专利引证关系,挖掘引证专利和被引专利之间继承和发展的知识流,建立知识进化...以专利引证网络为载体,从知识基因稳定性、遗传性以及变异性等基本特征出发,提出一种基于subject-action-object三元组的知识基因提取方法.应用连接度算法分析专利引证关系,挖掘引证专利和被引专利之间继承和发展的知识流,建立知识进化轨迹;利用文本语法分析技术,从专利权利要求书中提取subject-action-object三元组;基于语义词库WordNet进行语义加工,计算语义相似度,合并同义的subject-action-object三元组,绘制知识基因图谱.从美国专利数据库中采集了5 073项1975—1999年授权的数据挖掘领域的相关专利,分析了专利的地区分布情况和年度分布情况.从NBER(National Bureau of Economic Research)的专利数据集中查询得到专利引证关系,利用网络分析软件Pajek构建专利引证网络,作为实验数据样本,对所提出的知识基因提取方法进行验证.实验结果表明:所提取的subject-action-object三元组具备了知识基因稳定性、遗传性和变异性等特征,可以作为知识基因的一种表现形式.展开更多
This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion b...This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method.展开更多
基金supported by the National Natural Science Foundation of China(the Key Project,52131201Science Fund for Creative Research Groups,52221005)+1 种基金the China Scholarship Councilthe Joint Laboratory for Internet of Vehicles,Ministry of Education–China MOBILE Communications Corporation。
文摘This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we employ the fifth-order Bezier curve to generate and smooth the reference path along the road centerline.Cartesian coordinates are then transformed to achieve the curvature continuity of the generated curve.Considering the road constraints and vehicle dynamics,limited polynomial candidate trajectories are generated and smoothed in a curvilinear coordinate system.Furthermore,in selecting the optimal trajectory,we develop a unified and auto-tune objective function based on the principle of least action by employing AVs to simulate drivers’behavior and summarizing their manipulation characteristics of“seeking benefits and avoiding losses.”Finally,by integrating the idea of receding-horizon optimization,the proposed framework is achieved by considering dynamic multi-performance objectives and selecting trajectories that satisfy feasibility,optimality,and adaptability.Extensive simulations and experiments are performed,and the results demonstrate the framework’s feasibility and effectiveness,which avoids both dynamic and static obstacles and applies to various scenarios with multi-source interactive traffic participants.Moreover,we prove that the proposed method can guarantee real-time planning and safety requirements compared to drivers’manipulation.
文摘以专利引证网络为载体,从知识基因稳定性、遗传性以及变异性等基本特征出发,提出一种基于subject-action-object三元组的知识基因提取方法.应用连接度算法分析专利引证关系,挖掘引证专利和被引专利之间继承和发展的知识流,建立知识进化轨迹;利用文本语法分析技术,从专利权利要求书中提取subject-action-object三元组;基于语义词库WordNet进行语义加工,计算语义相似度,合并同义的subject-action-object三元组,绘制知识基因图谱.从美国专利数据库中采集了5 073项1975—1999年授权的数据挖掘领域的相关专利,分析了专利的地区分布情况和年度分布情况.从NBER(National Bureau of Economic Research)的专利数据集中查询得到专利引证关系,利用网络分析软件Pajek构建专利引证网络,作为实验数据样本,对所提出的知识基因提取方法进行验证.实验结果表明:所提取的subject-action-object三元组具备了知识基因稳定性、遗传性和变异性等特征,可以作为知识基因的一种表现形式.
文摘This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method.